Вывести соотношение между сопротивлениями для уравновешенного моста уитстона

Лабораторная работа № 31

Цель работы : 1. Изучение принципа работы измерительной мостовой схемы. 2. Определение величины сопротивления двух проводников и величины сопротивления при их последовательном и параллельном соединении. 3. Определение величины внутреннего сопротивления гальванометра.

Приборы и принадлежности : реохорд, набор резисторов с неизвестными сопротивлениями, магазин сопротивлений, милливольтметр, источник постоянного тока.

Теория R –моста Уитстона

Электрическим мостом в технике измерений называют электрический прибор для измерения сопротивлений, емкостей, индуктивностей и других электрических величин, представляющих собой измерительную мостовую цепь, действие которой основано на методике сравнения измеряемой величины с образцовой мерой. Как известно, метод сравнения дает весьма точные результаты измерений, вследствие чего мостовые схемы получили широкое распространение как в лабораторной, так и в производственной практике.

Классическая мостовая цепь состоит из четырех сопротивлений Z1, Z2, Z3, Z4, соединенных последовательно в виде четырехугольника (рис. 1), причем точки А, Е, В, D называют вершинами. Ветвь АВ, содержащая источник питания Un , называется диагональю питания, а ветвь ЕD, содержащая сопротивление нагрузки Z H , – диагональю нагрузки.. Сопротивления Z1, Z2, Z3, Z4, включенные между двумя соседними вершинами, называются плечами мостовой цепи.

Название «мостовая цепь» объясняется тем, что диагонали, как мостики, соединяют две противолежащие вершины (диагональ нагрузки, например, ранее так и называлась – мост). Схема, представленная на рис. 1, известна в литературе как четырехплечный мост, или мост Уитстона. В данной лабораторной работе мы познакомимся с работой одной из разновидностей моста Уитстона, а именно с той, которая позволяет проводить измерения величин активных сопротивлений.

Рис. 1

Условие равновесия моста Уитстона. R –мост Уитстона предназначен для измерения величин сопротивлений. Он состоит из реохорда АВ, чувствительного гальванометра SHAPE \* MERGEFORMAT и двух резисторов – известной величины R и неизвестной – R х. ( рис. 2).

Читайте также:  Чем вывести собачьи метки

Рис. 2

Реохорд представляет собой укрепленную на линейке однородную проволоку, вдоль которой может перемещаться скользящий контакт D. Рассмотрим схему без участка ЕD. Замкнем ключ К. Тогда по проволоке АВ потечет ток и вдоль нее будет наблюдаться равномерное падение потенциала от величины j a (в точке А) до величины j b (в точке В). В цепи АЕВ пойдет ток и будет наблюдаться падение потенциала от j a до j e (на резисторе R х) и от j e до j b (на резисторе R ). Очевидно, в точке Е потенциал имеет промежуточное значение j e между значениями j a и j b . Поэтому на участке АВ всегда можно найти точку D, потенциал которой равен потенциалу в точке Е: j D = j e . Если между точками Е и D включен гальванометр, то в этом случае ток через него не пойдет, т.к. φ e – φ D = 0.

Такое состояние моста называется равновесием моста. Покажем, что условие равновесия определяется соотношением

. (1)

Действительно, на основании второго закона Кирхгофа для любого замкнутого контура алгебраическая сумма падений потенциала равна алгебраической сумме электродвижущих сил e :

. (2)

Запишем эти условия для контуров АЕ D и ЕВD в случае уравновешенного моста (рис. 2):

; (3)

. (4)

Используем первый закон Кирхгофа: алгебраическая сумма сил токов в узле равна нулю: . Узлом называется точка или место соединения трех и более проводников (рис. 2). Для узла Е: IX – I + IG = 0. При равновесии моста IG = 0, тогда получим , . Из (3) и (4) получим

, .

Деля первое на второе, найдем соотношение (1). Так как сопротивление изотропного проводника цилиндрической формы зависит от геометрических размеров и материала, т.е. , где – удельное сопротивление проводника; l , S – длина и площадь сечения проводника, то сопротивление участков реохорда АВ можно записать в виде

; . (5)

Подставляя (5) в (1), получим искомую рабочую формулу

, (6)

где и – длины плеч реохорда АВ; R – сопротивление, подбираемое магазином сопротивлений.

Мост Уитстона может быть также использован для определения внутреннего сопротивления гальванометра r , причем гальвано
метр SHAPE \* MERGEFORMAT в этом случае включается, как показано на рис. 3.

Рис. 3

Если потенциалы j e и j D равны, то сила тока в диагонали ЕD равна нулю, а поэтому замыкание и размыкание ключа К1 не будут вызывать изменения силы тока в ветвях мостовой схемы, в том числе и в ветви гальванометра.

При равенстве потенциалов j e и j для моста имеет силу формула

, (7)

по которой непосредственно определяется измеряемое сопротивление гальванометра. Таким образом, мостовая схема может быть использована для измерения сопротивлений не только в том случае, когда гальванометр включен в ее диагональ, но и тогда, когда он включен в одно из ее плеч. В этом случае надо при измерении добиваться постоянства показания гальванометра при замыкании и размыкании ключа в указанной диагонали схемы.

Такой прием применяется для измерения сопротивления гальванометра, т.к. он не требует включения второго прибора в диагональ схемы.

Ход работы

Упражнение 1. Измерение величины сопротивления двух проводников, а также общего сопротивления при их последовательном и параллельном соединениях.

1. Собрать схему, изображенную на рис. 2.

2. Измерить величину сопротивления R х1, а также последующих сопротивлений (три раза). Для этого установить движок реохорда на середину ( ) и подбором величины сопротивления магазина R уравновесить мост, то есть добиться нулевого положения стрелки при включенном питании.

Повторить измерения при и , устанавливая движок реохорда вблизи его середины ( тем самым достигается минимальная погрешность результата). Измеряемая величина сопротивления определяется по формуле

.

3. Включить в цепь Rx 2 вместо Rx 1 и измерить его величину согласно п. 2.

4. Измерить величины сопротивлений последовательного и параллельного соединений Rx 1 и Rx 2 , включаемых вместо Rx в плечо АЕ (рис. 2). Измерения проводить согласно требованиям
пункта 2.

и

рассчитать значения величин сопротивлений и сравнить их со значениями, полученными при выполнении пункта 4.

6. Результат измерений занести в таблицу 1.

Источник

Мост Уитстона (мост постоянного тока)

Компенсационный способ измерения сопротивлений является наиболее точным. Принципиальная схема метода (мост Уитстона) дана на рис. 5. Мостовая схема представляет собой замкнутый четырехугольник abcd, составленный из сопротивлений R1, R2, R3, R4, называемых плечами моста. Противоположные вершины ас и bd соединены диагоналями моста. В одну диагональ включен источник тока, в другую – нулевой гальванометр Г. При некотором соотношении между сопротивлениями плеч ток, протекающий через гальванометр, обращается в ноль (ig = 0). В этом случае говорят, что мост уравновешен.

Условие равновесия моста. Обозначим токи в плечах соответственно через i1 , i2 , i3 , i4 . Так как ig = 0, то, во-первых, i1 = i2 , а i3 = i4 и, во-вторых, φb = φd . По закону Ома разности потенциалов для плеч равны:

Это и есть условие равновесия моста. Его используют для расчета одного из 4-х сопротивлений. Пусть вместо R1 в цепь включен резистор с неизвестным сопротивлением RX . При трех остальных известных сопротивлениях

Таким образом, измерение неизвестного сопротивления сводится к уравновешиванию моста с тремя известными и одним неизвестным сопротивлением и расчета последнего по формуле (7).

Уравновесить мост, т.е. добиться отсутствия тока через гальванометр, можно двумя способами. Во-первых, установив постоянное отношение R3 / R4, подбирать соответствующее сопротивление R2 и, во-вторых, установив постоянное сопротивление R2, изменять отношение плеч R3 / R4. Первый способ используется в декадных мостах. Второй способ реализуется в линейных мостах (рис. 6). Здесь RХ неизвестное сопротивление, R2 – магазин сопротивлений. Сопротивления R3 и R4 заменены отрезками l3 и l4 калиброванной проволоки (реохорда). Перемещая движок D вдоль реохорда, можно плавно изменять отношения плеч R3 / R4 . Так как сопротивление проволоки пропорционально длине, то отношение сопротивлений R3 / R4 можно заменить отношением соответствующих отрезков реохорда l3/l4 . Таким образом, измерение неизвестного сопротивления сводится к следующему:

1. Замыкая на короткое время кнопку К и перемещая движок D вдоль реохорда, следует добиться равновесия моста (при замкнутом ключе К ток через гальванометр не течет ig = 0).

2. Определить по линейке реохорда длины отрезков l3 и l4 = ll3 , где l – длина всего реохорда.

3. Рассчитать неизвестное сопротивление по формуле:

Для повышения точности измерений следует стремиться к тому, чтобы мост был уравновешен при отношении плеч l3/l4 близком к 1, т.е. чтобы движок D находился примерно в средней трети длины реохорда. Для этого сопротивление R2 должно быть приблизительно равно RХ . Если сопротивление RХ неизвестно даже приблизительно, то, выбрав R2 произвольно, уравновешивают мост и рассчитывают RХ сначала приближенно, а затем, установив на магазине сопротивлений R2 » RХ, повторяют измерения и рассчитывают RХ более точно.

Поскольку сопротивление реохорда мало, мост Уитстона описанного типа применяется, как правило, для измерения небольших сопротивлений (от 1 до 1000 Ом).

Источник

Оцените статью