Вывести матрицу целых чисел

Содержание
  1. Матрицы в Си
  2. Обявление матрицы в Си
  3. Задание матрицы в Си
  4. Ввод матрицы в Си с помощью клавиатуры
  5. Клёвый код
  6. Решаем задачи Абрамян на C. Matrix78
  7. Решаем задачи Абрамян на C. Matrix77
  8. Решаем задачи Абрамян на C. Matrix76
  9. Решаем задачи Абрамян на C. Matrix75
  10. Решаем задачи Абрамян на C. Matrix74
  11. Решаем задачи Абрамян на C. Matrix73
  12. Решаем задачи Абрамян на C. Matrix72
  13. Решаем задачи Абрамян на C. Matrix71
  14. Решаем задачи Абрамян на C. Matrix70
  15. Решаем задачи Абрамян на C. Matrix69
  16. Создать матрицу целых чисел A размером NxM и заполнить ее случайными числами из диапазона от (20) до (50)
  17. Вывод матрицы на экран паскаль
  18. Программирование. Двумерные массивы Pascal-Паскаль
  19. Двумерные массивы Паскаля – матрицы
  20. Описание двумерного массива Паскаля.
  21. Основные действия с двумерными массивами Паскаля
  22. Ввод двумерного массива Паскаля.
  23. Вывод двумерного массива Паскаля на экран.
  24. Представление двумерного массива Паскаля в памяти
  25. Сколько памяти выделяется для массива?
  26. Примеры решения задач с двумерными массивами Паскаля
  27. Программирование
  28. Исходники Pascal (127)
  29. Справочник

Матрицы в Си

Матрица это набор объектов, которые хранятся в виде таблицы. У каждой матрицы есть имя, единый тип всех ее объектов.

Обявление матрицы в Си

Также как и переменные матрицу в Си необходимо объявить перед тем как с ней работать, необходимо указать ее тип, ее имя , количество строк -1 и количество столбцов -1. Нумерация столбцов и строк идет с 0.

Тип матрицы Имя [количество строк-1][количество столбцов-1];

int A[8][9] ; / /объявляет целочисленную матрицу с именем A , у которой 9 строк и 10 столбцов

После объявления матрицы, с ее элементами можно работать. Чтобы обратитсья к элементу матрицы нужно указать имя матрицы в первых квадратных скобках указать номер строки, во вторых квадратных скобках указать номер столбца.

Читайте также:  Чем чистить флоковый диван

A[0][1]=10; // элементу матрицы с номер строки 0 и столбца 1 присваивается значение 10

printf(“%d”, A[0][1]);// выводит на экран элемент матрицы с номер строки 0 и столбца 1

Задание матрицы в Си

Чтобы работать с матрицей в Си, необходимо присвоить начальные значения всех ее элементов.

Для работы со всеми элементами матрицы используется вложенные циклы for

В главном цикле “пробегаем” по всем строкам, а во вложенном “пробегаем” по всем столбцам для каждой строки.

// “пробегаемся” по всем строкам. Нумерация строк с 0.

// вложенный цикл, “пробегаемся” по всем столбцам для Нумерация столбцов с 0.

…Имя матрицы [i][j]…// работаем с элементом матрицы с номером строки i и номером столбца j

Пример программы 22. Программа задаёт целочисленную матрицу размером 10 на 10 и заполняет ее случайными числами в диапазоне, который укажет пользователь и выводит ее на экран.

int a[9][9]; // объявление матрицы 10 на 10

int i,j; // счетчики циклов

int range;// диапазон в котором присваиваются значения элементов матрицы

//ввод диапазона случайных чисел

printf(«введите диапазон заполнения\n»);

// пробегаем по всем строкам

// пробегаем по всем столбцам для данной строки i

a[i][j]=rand() % range+1; // прсиваиваем элементу матрицы a с номером строки i и номер столбца j случайного значения в диапазоне от 0 до 9

// пробегаем по всем строкам

// пробегаем по всем столбцам для данной строки i

// переход на следующую строку

При выводе матрицы на экран в Си для каждой строки мы совершаем переход на следующую строку с помощью оператора printf(» «);

Ввод матрицы в Си с помощью клавиатуры

Пример программы 23. Задаётся матрица размера 3 на 3 с помощью клавиатуры и ищется ее максимальный элемент. Он выводится на экран. При поиске максимального элемента, мы создаем специальную переменную max и присваиваем ей значение элемента a[0][0]. Пробегаем по всем элементам матрицы с помощью вложенного цикла, сравнивая текущий элемент с максимумом, если текущий элемент больше максимума, то максимуму присваивается значение этого элемента.

int a[2][2]; // объявление матрицы 3 на 3

int i,j; // счетчики циклов

int max; // переменная для хранения максимального элемента матрицы

// пробегаем по всем строкам

// пробегаем по всем столбцам для данной строки i

// ввод текущего элемента матрицы с клавиатуры

printf(«Введите элемент матрицы [%d][%d]», i, j);

// переход на следующую строку

// пробегаем по всем строкам

// пробегаем по всем столбцам для данной строки i

// переход на следующую строку

// пробегаем по всем строкам

// пробегаем по всем столбцам для данной строки i

// сравниваем текущий элемент массива с максимумом

// вывод максимального элемента

printf («Максимальный элемент массива %d», max);

Вернуться к содержанию Перейти к теме Работа с файлами в Си

Полезно почитать по теме массивы и матрицы в си
Массивы в си
Игра на си Крестики Нолики

Источник

Клёвый код

Скриптописание и кодинг

Решаем задачи Абрамян на C. Matrix78

Matrix78. Дана матрица размера $$M \times N$$. Упорядочить ее строки так, чтобы их минимальные элементы образовывали убывающую последовательность.

Решаем задачи Абрамян на C. Matrix77

Matrix77. Дана матрица размера $$M \times N$$. Упорядочить ее столбцы так, чтобы их последние элементы образовывали убывающую последовательность.

Решаем задачи Абрамян на C. Matrix76

Matrix76. Дана матрица размера $$M \times N$$. Упорядочить ее строки так, чтобы их первые элементы образовывали возрастающую последовательность.

Решаем задачи Абрамян на C. Matrix75

Matrix75. Дана матрица размера $$M \times N$$. Элемент матрицы называется ее локальным максимумом, если он больше всех окружающих его элементов. Поменять знак всех локальных максимумов данной матрицы на противоположный. При решении допускается использовать вспомогательную матрицу.

Решаем задачи Абрамян на C. Matrix74

Matrix74. Дана матрица размера $$M \times N$$. Элемент матрицы называется ее локальным минимумом, если он меньше всех окружающих его элементов. Заменить все локальные минимумы данной матрицы на нули. При решении допускается использовать вспомогательную матрицу.

Решаем задачи Абрамян на C. Matrix73

Matrix73. Дана матрица размера $$M \times N$$. После последнего столбца, содержащего только отрицательные элементы, вставить столбец из нулей. Если требуемых столбцов нет, то вывести матрицу без изменений.

Решаем задачи Абрамян на C. Matrix72

Matrix72. Дана матрица размера $$M \times N$$. Перед первым столбцом, содержащим только положительные элементы, вставить столбец из единиц. Если требуемых столбцов нет, то вывести матрицу без изменений.

Решаем задачи Абрамян на C. Matrix71

Matrix71. Дана матрица размера $$M \times N$$. Продублировать столбец матрицы, содержащий ее минимальный элемент.

Решаем задачи Абрамян на C. Matrix70

Matrix70. Дана матрица размера $$M \times N$$. Продублировать строку матрицы, содержащую ее максимальный элемент.

Решаем задачи Абрамян на C. Matrix69

Matrix69. Дана матрица размера $$M \times N$$ и целое число $$K$$ $$(1 \le K \le $$N$$)$$. После столбца матрицы с номером $$K$$ вставить столбец из единиц.

Источник

Создать матрицу целых чисел A размером NxM и заполнить ее случайными числами из диапазона от (20) до (50)

Создать матрицу целых чисел A размером N на M и заполнить ее случайными числами из диапазона от (20) до (50). Значения N и M вводятся с клавиатуры. Запомнить в массиве B признак для каждого столбца матрицы: 1 – все элементы столбца представляют собой четные числа, 0 – среди элементов столбца есть хотя бы одно нечетное число. Вывести: исходную матрицу A, массив B.

Помогите, пожалуйста, правильно написать цикл для проверки четности
программа выводит только последнюю строку без учета предыдущих

Помощь в написании контрольных, курсовых и дипломных работ здесь.

Создать прямоугольный массив целых чисел и заполнить его случайными числами
Создать прямоугольный массив целых чисел и заполнить его случайными числами от 1 до 60. Определить.

Построчно ввести матрицу целых чисел 5х5 (любые целые числа), вторую матрицу заполнить случайными числами
Построчно ввести матрицу целых чисел 5х5 (любые целые числа), вторую матрицу заполнить случайными.

Заполнить действительную матрицу размерностью (6*5) случайными числами из диапазона [-3;2]
Заполнить действительную матрицу размерностью (6*5) случайными числами из диапазона . Вывести на.

Источник

Вывод матрицы на экран паскаль

CONST – слово, которое «говорит» программе, что далее будут объявлены константы
kol_strok – переменная, в которой будет храниться количество строк
kol_stolbcov – переменная, в которой будет храниться количество столбцов
VAR – слово, которое «говорит» программе, что далее будут объявлены переменные, которые используются в программе, и их тип
A – массив, содержащий kol_strok строк kol_stolbcov столбцов, состоящий из REAL (действительных чисел)
i,j – INTEGER (целочисленные) переменные
BEGIN – начало программы
for i:=1 to kol_strok do – «для i от 1 до kol_strok делать» , т.е. следующий оператор будет выполняться для i=1,2,3. kol_strok
for j:=1 to kol_stolbcov do – «для j от 1 до kol_stolbcov делать» , т.е. следующий оператор будет выполняться для j=1,2,3. kol_stolbcov
Read(A[i,j]) – запрос на ввод значения элемента матрицы А, стоящего на пересечении i-ой строки и j-го столбца
END. – конец программы

Автоматическое случайное присваивание значений из промежутка [-100;100]:

CONST
kol_strok=5;
kol_stolbcov=4;
VAR
A:array[1..kol_strok,1..kol_stolbcov] of integer;
i,j:integer;
BEGIN
Randomize;
for i:=1 to kol_strok do
for j:=1 to kol_stolbcov do
A[i,j]:=Random(101)-Random(101);
END.

Randomize; – нужно, чтобы при использовании Random получались разные значения
Random(101) – случайное целое из промежутка [0;101)

for i:=1 to kol_strok do
begin
for j:=1 to kol_stolbcov do
Write(A[i,j]:4:2,’ ‘);
Writeln;
end;

Write(A[i,j]:4:2,’ ‘) – вывод на экран элемента матрицы А, стоящего на пересечении i-ой строки и j-го столбца, 4 позиции для числа, 2 позиции после запятой и пробел
Writeln – переход на следующую строку

Программирование. Двумерные массивы Pascal-Паскаль

  • Скачено бесплатно: 6945
  • Куплено: 414
  • Pascal-Паскаль->Программирование. Двумерные массивы Pascal-Паскаль

Двумерные массивы Паскаля – матрицы

Двумерный массив в Паскале трактуется как одномерный массив, тип элементов которого также является массивом (массив массивов). Положение элементов в двумерных массивах Паскаля описывается двумя индексами. Их можно представить в виде прямоугольной таблицы или матрицы.

Рассмотрим двумерный массив Паскаля размерностью 3*3, то есть в ней будет три строки, а в каждой строке по три элемента:

Каждый элемент имеет свой номер, как у одномерных массивов, но сейчас номер уже состоит из двух чисел – номера строки, в которой находится элемент, и номера столбца. Таким образом, номер элемента определяется пересечением строки и столбца. Например, a 21 – это элемент, стоящий во второй строке и в первом столбце.

Описание двумерного массива Паскаля.

Существует несколько способов объявления двумерного массива Паскаля.

Мы уже умеем описывать одномерные массивы, элементы которых могут иметь любой тип, а, следовательно, и сами элементы могут быть массивами. Рассмотрим следующее описание типов и переменных:

Пример описания двумерного массива Паскаля

Мы объявили двумерный массив Паскаля m, состоящий из 10 строк, в каждой из которых 5 столбцов. При этом к каждой i -й строке можно обращаться m [ i ], а каждому j -му элементу внутри i -й строки – m [ i , j ].

Определение типов для двумерных массивов Паскаля можно задавать и в одной строке:

Обращение к элементам двумерного массива имеет вид: M [ i , j ]. Это означает, что мы хотим получить элемент, расположенный в i -й строке и j -м столбце. Тут главное не перепутать строки со столбцами, а то мы можем снова получить обращение к несуществующему элементу. Например, обращение к элементу M [10, 5] имеет правильную форму записи, но может вызвать ошибку в работе программы.

Основные действия с двумерными массивами Паскаля

Все, что было сказано об основных действиях с одномерными массивами, справедливо и для матриц. Единственное действие, которое можно осуществить над однотипными матрицами целиком – это присваивание. Т.е., если в программе у нас описаны две матрицы одного типа, например,

то в ходе выполнения программы можно присвоить матрице a значение матрицы b ( a := b ). Все остальные действия выполняются поэлементно, при этом над элементами можно выполнять все допустимые операции, которые определены для типа данных элементов массива. Это означает, что если массив состоит из целых чисел, то над его элементами можно выполнять операции, определенные для целых чисел, если же массив состоит из символов, то к ним применимы операции, определенные для работы с символами.

Ввод двумерного массива Паскаля.

Для последовательного ввода элементов одномерного массива мы использовали цикл for, в котором изменяли значение индекса с 1-го до последнего. Но положение элемента в двумерном массиве Паскаля определяется двумя индексами: номером строки и номером столбца. Это значит, что нам нужно будет последовательно изменять номер строки с 1-й до последней и в каждой строке перебирать элементы столбцов с 1-го до последнего. Значит, нам потребуется два цикла for , причем один из них будет вложен в другой.

Рассмотрим пример ввода двумерного массива Паскаля с клавиатуры:

Пример программы ввода двумерного массива Паскаля с клавиатуры

Двумерный массив Паскаля можно заполнить случайным образом, т.е. использовать функцию random (N), а также присвоить каждому элементу матрицы значение некоторого выражения. Способ заполнения двумерного массива Паскаля выбирается в зависимости от поставленной задачи, но в любом случае должен быть определен каждый элемент в каждой строке и каждом столбце.

Вывод двумерного массива Паскаля на экран.

Вывод элементов двумерного массива Паскаля также осуществляется последовательно, необходимо напечатать элементы каждой строки и каждого столбца. При этом хотелось бы, чтобы элементы, стоящие в одной строке, печатались рядом, т.е. в строку, а элементы столбца располагались один под другим. Для этого необходимо выполнить следующую последовательность действий (рассмотрим фрагмент программы для массива, описанного в предыдущем примере):

Пример программы вывода двумерного массива Паскаля

Замечание (это важно!): очень часто в программах студентов встречается ошибка, когда ввод с клавиатуры или вывод на экран массива пытаются осуществить следующим образом: readln (a), writeln (a), где а – это переменная типа массив. При этом их удивляет сообщение компилятора, что переменную этого типа невозможно считать или напечатать. Может быть, вы поймете, почему этого сделать нельзя, если представите N кружек, стоящих в ряд, а у вас в руках, например, чайник с водой. Можете вы по команде «налей воду» наполнить сразу все кружки? Как бы вы ни старались, но в каждую кружку придется наливать отдельно. Заполнение и вывод на экран элементов массива также должно осуществляться последовательно и поэлементно, т.к. в памяти ЭВМ элементы массива располагаются в последовательных ячейках.

Представление двумерного массива Паскаля в памяти

Элементы абстрактного массива в памяти машины физически располагаются последовательно, согласно описанию. При этом каждый элемент занимает в памяти количество байт, соответствующее его размеру. Например, если массив состоит из элементов типа integer , то каждый элемент будет занимать по два байта. А весь массив займет S^2 байта, где S – количество элементов в массиве.

А сколько места займет массив, состоящий из массивов, т.е. матрица? Очевидно: S i^S j , где S i – количество строк, а S j – количество элементов в каждой строке. Например, для массива типа

потребуется 12 байт памяти.

Как будут располагаться в памяти элементы этого массива? Рассмотрим схему размещения массива M типа matrix в памяти.

Под каждый элемент M [i,j] типа integer выделяется две ячейки памяти. Размещение в памяти осуществляется «снизу вверх». Элементы размещаются в порядке изменения индекса, что соответствует схеме вложенных циклов: сначала размещается первая строка, затем вторая, третья. Внутри строки по порядку идут элементы: первый, второй и т.д.

Как мы знаем, доступ к любой переменной возможен, только если известен адрес ячейки памяти, в которой хранится переменная. Конкретная память выделяется для переменной при загрузке программы, то есть устанавливается взаимное соответствие между переменной и адресом ячейки. Но если мы объявили переменную как массив, то программа «знает» адрес начала массива, то есть первого его элемента. Как же происходит доступ ко всем другим элементам массива? При реальном доступе к ячейке памяти, в которой хранится элемент двумерного массива, система вычисляет ее адрес по формуле:

где Addr – фактический начальный адрес, по которому массив располагается в памяти; I , J – индексы элемента в двумерном массиве; SizeElem – размер элемента массива (например, два байта для элементов типа integer ); Cols – количество элементов в строке.

Выражение SizeElem * Cols *( I -1)+ SizeElem *( J -1) называют смещением относительно начала массива.

Сколько памяти выделяется для массива?

Рассмотрим не столько вопрос о том, сколько памяти выделяется под массив (это мы разобрали в предыдущем разделе), а о том, каков максимально допустимый размер массива, учитывая ограниченный объем памяти.

Для работы программы память выделяется сегментами по 64 Кбайт каждый, причем как минимум один из них определяется как сегмент данных. Вот в этом-то сегменте и располагаются те данные, которые будет обрабатывать программа. Ни одна переменная программы не может располагаться более чем в одном сегменте. Поэтому, даже если в сегменте находится только одна переменная, описанная как массив, то она не сможет получить более чем 65536 байт. Но почти наверняка, кроме массива в сегменте данных будут описаны еще некоторые переменные, поэтому реальный объем памяти, который может быть выделен под массив, находится по формуле: 65536- S , где S – объем памяти, уже выделенный под другие переменные.

Зачем нам это знать? Для того чтобы не удивляться, если при компиляции транслятор выдаст сообщение об ошибке объявления слишком длинного массива, когда в программе встретит описание (правильное с точки зрения синтаксиса):

Вы уже знаете, что, учитывая двухбайтовое представление целых чисел, реально можно объявить массив с количеством элементов равным 65536/2 –1=32767. И то лишь в том случае, если других переменных не будет. Двумерные массивы должны иметь еще меньшие границы индексов.

Примеры решения задач с двумерными массивами Паскаля

Задача: Найти произведение ненулевых элементов матрицы.

Решение:

  • Для решения данной задачи нам потребуются переменные: матрица, состоящая, например, из целочисленных элементов; P – произведение элементов, отличных от 0; I , J – индексы массива; N , M – количество строк и столбцов в матрице.
  • Входными данными являются N , M – их значения введем с клавиатуры; матрица – ввод матрицы оформим в виде процедуры, заполнение матрицы осуществим случайным образом, т.е. с помощью функции random ().
  • Выходными данными будет являться значение переменной P (произведение).
  • Чтобы проверить правильность выполнения программы, необходимо вывести матрицу на экран, для этого оформим процедуру вывода матрицы.
  • Ход решения задачи:

обсудим сначала выполнение основной программы, реализацию процедур обговорим чуть позже:

  • введем значения N и M ;
  • Введем двумерный массив Паскаля, для этого обращаемся к процедуре vvod ( a ), где а – матрица;
  • Напечатаем полученную матрицу, для этого обращаемся к процедуре print ( a );
  • Присвоим начальное значение переменной P =1;
  • Будем последовательно перебирать все строки I от 1-й до N -й, в каждой строке будем перебирать все столбцы J от 1-го до M -го, для каждого элемента матрицы будем проверять условие: если a ij ? 0, то произведение P будем домножать на элемент a ij ( P = P * a ij );
  • Выведем на экран значение произведения ненулевых элементов матрицы – P ;

А теперь поговорим о процедурах.

Замечание (это важно!) Параметром процедуры может быть любая переменная предопределенного типа, это означает, что для передачи в процедуру массива в качестве параметра, тип его должен быть описан заранее. Например :

Вернемся теперь к нашим процедурам.

Процедура ввода матрицы называется vvod , параметром процедуры является матрица, причем она должна быть, как результат, передана в основную программу, следовательно, параметр должен передаваться по ссылке. Тогда заголовок нашей процедуры будет выглядеть так:

Для реализации вложенных циклов в процедуре нам потребуются локальные переменные-счетчики, например, k и h . Алгоритм заполнения матрицы уже обсуждался, поэтому не будем его повторять.

Процедура вывода матрицы на экран называется print , параметром процедуры является матрица, но в этом случае она является входным параметром, следовательно, передается по значению. Заголовок этой процедуры будет выглядеть следующим образом:

И вновь для реализации вложенных циклов внутри процедуры нам потребуются счетчики, пусть они называются так же – k и h . Алгоритм вывода матрицы на экран был описан выше, воспользуемся этим описанием.

Пример программы двумерного массива Паскаля

Программирование

Исходники Pascal (127)

Справочник

Справочник по паскалю: директивы, функции, процедуры, операторы и модули по алфавиту

На предыдущей странице мы рассматривали простейшие случаи формирования матриц по некоторому правилу. Здесь же мы рассмотрим вывод элементов сформированной матрицы в различном порядке.

Ниже приведено решение предыдущей задачи Matrix15, но только с процедурами:

Источник

Оцените статью