- Вывести формулы производных тригонометрических функций
- Вывод производных обратных тригонометрических функций
- Вывод производных арксинуса и арккосинуса
- Вывод производных арктангенса и арккотангенса
- Производные высших порядков
- Производные арксинуса
- Производная арксинуса n-го порядка
- Производная арккосинуса n-го порядка
- Производные арктангенса
- Производная арктангенса n-го порядка
- Производные арккотангенса
- Таблица производных. Доказательство формул
- Производная постоянной
- Производная степенной функции
- Производная показательной функции
- Производная логарифмической функции
- Производные тригонометрических функций
- Производные обратных тригонометрических функций
- Производные гиперболических функций
Вывести формулы производных тригонометрических функций
К основным тригонометрическим функциям относятся следующие \(6\) функций: синус (\(\sin x\)) , косинус (\(\cos x\)) , тангенс (\(\text
Для каждой из этих функций существует обратная тригонометрическая функция . Они называются, соответственно, арксинус (\(\arcsin x\)) , арккосинус (\(\arccos x\)) , арктангенс (\(\text
Все указанные функции непрерывны и дифференцируемы в своей области определения. Далее мы составим список производных для этих \(12\) функций.
Производные обратных тригонометрических функций можно вывести, используя теорему о производной обратной функции . Так, например, для функции \(y = f\left( x \right) = \arcsin x\) обратной функцией является синус, т.е. \(x = \varphi \left( y \right) = \sin y.\) Тогда производная арксинуса равна: \[ <<\left( <\arcsin x>\right)^\prime > = f’\left( x \right) = \frac<1><<\varphi '\left( y \right)>> > = <\frac<1> <<<<\left( <\sin y>\right)>^\prime >>> > = <\frac<1><<\cos y>> > = <\frac<1><<\sqrt <1 - <\sin^2>y> >> > = <\frac<1><<\sqrt <1 - <\sin^2>\left( <\arcsin x>\right)> >> > = <\frac<1><<\sqrt <1 -
Производная | Область определения |
---|---|
\( <\left( <\sin x>\right)^\prime > = \cos x\) | \(- \infty линейные свойства производной , правило дифференцирования сложной функции и формулу двойного угла , получаем: \[ |
Заметим, что функция арксинус определена на отрезке \(\left[ < - 1,1>\right]\). В нашем случае условие, определяющее допустимые значения \(x\), выглядит так: \[ <- 1 \le \frac<<1 -
->
Источник
Вывод производных обратных тригонометрических функций
Вывод производных арксинуса и арккосинуса
Сначала выведем формулу производной арксинуса. Пусть
y = arcsin x .
Поскольку арксинус есть функция, обратная к синусу, то
.
Здесь y – функция от x . Дифференцируем по переменной x :
.
Применяем формулу производной сложной функции:
.
Итак, мы нашли:
.
Поскольку , то . Тогда
.
И предыдущая формула принимает вид:
. Отсюда
.
Точно таким способом можно получить формулу производной арккосинуса. Однако проще воспользоваться формулой, связывающей обратные тригонометрические функции:
.
Тогда
.
Более подробно изложение представлено на странице “Вывод производных арксинуса и арккосинуса”. Там дается вывод производных двумя способами – рассмотренным выше и по формуле производной обратной функции.
Вывод производных арктангенса и арккотангенса
Таким же способом найдем производные арктангенса и арккотангенса.
Пусть
y = arctg x .
Арктангенс есть функция, обратная к тангенсу:
.
Дифференцируем по переменной x :
.
Применяем формулу производной сложной функции:
.
Итак, мы нашли:
.
Далее выразим через и учтем, что .
.
Тогда
.
Отсюда
.
См. “Вывод производных арктангенса и арккотангенса”. На этой странице изложен вывод производных двумя способами – рассмотренным выше и по формуле производной обратной функции.
Производные высших порядков
Далее мы приводим некоторые соотношения и выражения для производных высших порядков от обратных тригонометрических функций. Полное изложение вывода формул производных высших порядков представлено на страницах Вывод производных высших порядков арксинуса и арккосинуса и Вывод производных высших порядков арктангенса и арккотангенса.
Производные арксинуса
Пусть
.
Производную первого порядка от арксинуса мы уже нашли:
.
Дифференцируя, находим производную второго порядка:
;
.
Ее также можно записать в следующем виде:
.
Отсюда получаем дифференциальное уравнение, которому удовлетворяют производные арксинуса первого и второго порядков:
.
Дифференцируя это уравнение, можно найти производные высших порядков.
Производная арксинуса n-го порядка
Производная арксинуса n-го порядка имеет следующий вид:
,
где – многочлен степени . Он определяется по формулам:
;
.
Здесь .
Многочлен удовлетворяет дифференциальному уравнению:
.
Производная арккосинуса n-го порядка
Производные для арккосинуса получаются из производных для арксинуса с помощью тригонометрической формулы:
.
Поэтому производные этих функций отличаются только знаком:
.
Производные арктангенса
Пусть . Мы нашли производную арккотангенса первого порядка:
.
Разложим дробь на простейшие:
.
Здесь – мнимая единица, .
Дифференцируем раз и приводим дробь к общему знаменателю:
.
Производная арктангенса n-го порядка
Таким образом, производную арктангенса n-го порядка можно представить несколькими способами:
;
.
Производные арккотангенса
Пусть теперь . Применим формулу, связывающей обратные тригонометрические функции:
.
Тогда производная n-го порядка от арккотангенса отличаются только знаком от производной арктангенса:
.
Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.
Автор: Олег Одинцов . Опубликовано: 20-04-2017
Источник
Таблица производных. Доказательство формул
Приведем сводную таблицу для удобства и наглядности при изучении темы.
Константа y = C
Степенная функция y = x p
( x p ) ‘ = p · x p — 1
Показательная функция y = a x
( a x ) ‘ = a x · ln a
В частности, при a = e имеем y = e x
Логарифмическая функция
( log a x ) ‘ = 1 x · ln a
В частности, при a = e имеем y = ln x
Тригонометрические функции
( sin x ) ‘ = cos x ( cos x ) ‘ = — sin x ( t g x ) ‘ = 1 cos 2 x ( c t g x ) ‘ = — 1 sin 2 x
Обратные тригонометрические функции
( a r c sin x ) ‘ = 1 1 — x 2 ( a r c cos x ) ‘ = — 1 1 — x 2 ( a r c t g x ) ‘ = 1 1 + x 2 ( a r c c t g x ) ‘ = — 1 1 + x 2
Гиперболические функции
( s h x ) ‘ = c h x ( c h x ) ‘ = s h x ( t h x ) ‘ = 1 c h 2 x ( c t h x ) ‘ = — 1 s h 2 x
Разберем, каким образом были получены формулы указанной таблицы или, иначе говоря, докажем вывод формул производных для каждого вида функций.
Производная постоянной
Для того, чтобы вывести данную формулу, возьмем за основу определение производной функции в точке. Используем x 0 = x , где x принимает значение любого действительного числа, или, иначе говоря, x является любым числом из области определения функции f ( x ) = C . Составим запись предела отношения приращения функции к приращению аргумента при ∆ x → 0 :
lim ∆ x → 0 ∆ f ( x ) ∆ x = lim ∆ x → 0 C — C ∆ x = lim ∆ x → 0 0 ∆ x = 0
Обратите внимание, что под знак предела попадает выражение 0 ∆ x . Оно не есть неопределенность «ноль делить на ноль», поскольку в числителе записана не бесконечно малая величина, а именно нуль. Иначе говоря, приращение постоянной функции всегда есть нуль.
Итак, производная постоянной функции f ( x ) = C равна нулю на всей области определения.
Даны постоянные функции:
f 1 ( x ) = 3 , f 2 ( x ) = a , a ∈ R , f 3 ( x ) = 4 . 13 7 22 , f 4 ( x ) = 0 , f 5 ( x ) = — 8 7
Необходимо найти их производные.
Решение
Опишем заданные условия. В первой функции мы видим производную натурального числа 3 . В следующем примере необходимо брать производную от а , где а — любое действительное число. Третий пример задает нам производную иррационального числа 4 . 13 7 22 , четвертый — производную нуля (нуль – целое число). Наконец, в пятом случае имеем производную рациональной дроби — 8 7 .
Ответ: производные заданных функций есть нуль при любом действительном x (на всей области определения)
f 1 ‘ ( x ) = ( 3 ) ‘ = 0 , f 2 ‘ ( x ) = ( a ) ‘ = 0 , a ∈ R , f 3 ‘ ( x ) = 4 . 13 7 22 ‘ = 0 , f 4 ‘ ( x ) = 0 ‘ = 0 , f 5 ‘ ( x ) = — 8 7 ‘ = 0
Производная степенной функции
Переходим к степенной функции и формуле ее производной, имеющей вид: ( x p ) ‘ = p · x p — 1 , где показатель степени p является любым действительным числом.
Приведем доказательство формулы, когда показатель степени – натуральное число: p = 1 , 2 , 3 , …
Вновь опираемся на определение производной. Составим запись предела отношения приращения степенной функции к приращению аргумента:
( x p ) ‘ = lim ∆ x → 0 = ∆ ( x p ) ∆ x = lim ∆ x → 0 ( x + ∆ x ) p — x p ∆ x
Чтобы упростить выражение в числителе, используем формулу бинома Ньютона:
( x + ∆ x ) p — x p = C p 0 + x p + C p 1 · x p — 1 · ∆ x + C p 2 · x p — 2 · ( ∆ x ) 2 + . . . + + C p p — 1 · x · ( ∆ x ) p — 1 + C p p · ( ∆ x ) p — x p = = C p 1 · x p — 1 · ∆ x + C p 2 · x p — 2 · ( ∆ x ) 2 + . . . + C p p — 1 · x · ( ∆ x ) p — 1 + C p p · ( ∆ x ) p
( x p ) ‘ = lim ∆ x → 0 ∆ ( x p ) ∆ x = lim ∆ x → 0 ( x + ∆ x ) p — x p ∆ x = = lim ∆ x → 0 ( C p 1 · x p — 1 · ∆ x + C p 2 · x p — 2 · ( ∆ x ) 2 + . . . + C p p — 1 · x · ( ∆ x ) p — 1 + C p p · ( ∆ x ) p ) ∆ x = = lim ∆ x → 0 ( C p 1 · x p — 1 + C p 2 · x p — 2 · ∆ x + . . . + C p p — 1 · x · ( ∆ x ) p — 2 + C p p · ( ∆ x ) p — 1 ) = = C p 1 · x p — 1 + 0 + 0 + . . . + 0 = p ! 1 ! · ( p — 1 ) ! · x p — 1 = p · x p — 1
Так, мы доказали формулу производной степенной функции, когда показатель степени – натуральное число.
Чтобы привести доказательство для случая, когда p — любое действительное число, отличное от нуля, используем логарифмическую производную (здесь следует понимать отличие от производной логарифмической функции). Чтобы иметь более полное понимание желательно изучить производную логарифмической функции и дополнительно разобраться с производной неявно заданной функции и производной сложной функции.
Рассмотрим два случая: когда x положительны и когда x отрицательны.
Итак, x > 0 . Тогда: x p > 0 . Логарифмируем равенство y = x p по основанию e и применим свойство логарифма:
y = x p ln y = ln x p ln y = p · ln x
На данном этапе получили неявно заданную функцию. Определим ее производную:
( ln y ) ‘ = ( p · ln x ) 1 y · y ‘ = p · 1 x ⇒ y ‘ = p · y x = p · x p x = p · x p — 1
Теперь рассматриваем случай, когда x – отрицательное число.
Если показатель p есть четное число, то степенная функция определяется и при x 0 , причем является четной: y ( x ) = — y ( ( — x ) p ) ‘ = — p · ( — x ) p — 1 · ( — x ) ‘ = = p · ( — x ) p — 1 = p · x p — 1
Тогда x p 0 и возможно составить доказательство, используя логарифмическую производную.
Если p есть нечетное число, тогда степенная функция определена и при x 0 , причем является нечетной: y ( x ) = — y ( — x ) = — ( — x ) p . Тогда x p 0 , а значит логарифмическую производную задействовать нельзя. В такой ситуации возможно взять за основу доказательства правила дифференцирования и правило нахождения производной сложной функции:
y ‘ ( x ) = ( — ( — x ) p ) ‘ = — ( ( — x ) p ) ‘ = — p · ( — x ) p — 1 · ( — x ) ‘ = = p · ( — x ) p — 1 = p · x p — 1
Последний переход возможен в силу того, что если p — нечетное число, то p — 1 либо четное число, либо нуль (при p = 1 ), поэтому, при отрицательных x верно равенство ( — x ) p — 1 = x p — 1 .
Итак, мы доказали формулу производной степенной функции при любом действительном p .
f 1 ( x ) = 1 x 2 3 , f 2 ( x ) = x 2 — 1 4 , f 3 ( x ) = 1 x log 7 12
Определите их производные.
Решение
Часть заданных функций преобразуем в табличный вид y = x p , опираясь на свойства степени, а затем используем формулу:
f 1 ( x ) = 1 x 2 3 = x — 2 3 ⇒ f 1 ‘ ( x ) = — 2 3 · x — 2 3 — 1 = — 2 3 · x — 5 3 f 2 ‘ ( x ) = x 2 — 1 4 = 2 — 1 4 · x 2 — 1 4 — 1 = 2 — 1 4 · x 2 — 5 4 f 3 ( x ) = 1 x log 7 12 = x — log 7 12 ⇒ f 3 ‘ ( x ) = — log 7 12 · x — log 7 12 — 1 = — log 7 12 · x — log 7 12 — log 7 7 = — log 7 12 · x — log 7 84
Производная показательной функции
Выведем формулу производной, взяв за основу определение:
( a x ) ‘ = lim ∆ x → 0 a x + ∆ x — a x ∆ x = lim ∆ x → 0 a x ( a ∆ x — 1 ) ∆ x = a x · lim ∆ x → 0 a ∆ x — 1 ∆ x = » open=» 0 0
Мы получили неопределенность. Чтобы раскрыть ее, запишем новую переменную z = a ∆ x — 1 ( z → 0 при ∆ x → 0 ). В таком случае a ∆ x = z + 1 ⇒ ∆ x = log a ( z + 1 ) = ln ( z + 1 ) ln a . Для последнего перехода использована формула перехода к новому основанию логарифма.
Осуществим подстановку в исходный предел:
( a x ) ‘ = a x · lim ∆ x → 0 a ∆ x — 1 ∆ x = a x · ln a · lim ∆ x → 0 1 1 z · ln ( z + 1 ) = = a x · ln a · lim ∆ x → 0 1 ln ( z + 1 ) 1 z = a x · ln a · 1 ln lim ∆ x → 0 ( z + 1 ) 1 z
Вспомним второй замечательный предел и тогда получим формулу производной показательной функции:
( a x ) ‘ = a x · ln a · 1 ln lim z → 0 ( z + 1 ) 1 z = a x · ln a · 1 ln e = a x · ln a
Даны показательные функции:
f 1 ( x ) = 2 3 x , f 2 ( x ) = 5 3 x , f 3 ( x ) = 1 ( e ) x
Необходимо найти их производные.
Решение
Используем формулу производной показательной функции и свойства логарифма:
f 1 ‘ ( x ) = 2 3 x ‘ = 2 3 x · ln 2 3 = 2 3 x · ( ln 2 — ln 3 ) f 2 ‘ ( x ) = 5 3 x ‘ = 5 3 x · ln 5 1 3 = 1 3 · 5 3 x · ln 5 f 3 ‘ ( x ) = 1 ( e ) x ‘ = 1 e x ‘ = 1 e x · ln 1 e = 1 e x · ln e — 1 = — 1 e x
Производная логарифмической функции
Приведем доказательство формулы производной логарифмической функции для любых x в области определения и любых допустимых значениях основания а логарифма. Опираясь на определение производной, получим:
( log a x ) ‘ = lim ∆ x → 0 log a ( x + ∆ x ) — log a x ∆ x = lim ∆ x → 0 log a x + ∆ x x ∆ x = = lim ∆ x → 0 1 ∆ x · log a 1 + ∆ x x = lim ∆ x → 0 log a 1 + ∆ x x 1 ∆ x = = lim ∆ x → 0 log a 1 + ∆ x x 1 ∆ x · x x = lim ∆ x → 0 1 x · log a 1 + ∆ x x x ∆ x = = 1 x · log a lim ∆ x → 0 1 + ∆ x x x ∆ x = 1 x · log a e = 1 x · ln e ln a = 1 x · ln a
Из указанной цепочки равенств видно, что преобразования строились на основе свойства логарифма. Равенство lim ∆ x → 0 1 + ∆ x x x ∆ x = e является верным в соответствии со вторым замечательным пределом.
Заданы логарифмические функции:
f 1 ( x ) = log ln 3 x , f 2 ( x ) = ln x
Необходимо вычислить их производные.
Решение
Применим выведенную формулу:
f 1 ‘ ( x ) = ( log ln 3 x ) ‘ = 1 x · ln ( ln 3 ) ; f 2 ‘ ( x ) = ( ln x ) ‘ = 1 x · ln e = 1 x
Итак, производная натурального логарифма есть единица, деленная на x .
Производные тригонометрических функций
Используем некоторые тригонометрические формулы и первый замечательный предел, чтобы вывести формулу производной тригонометрической функции.
Согласно определению производной функции синуса, получим:
( sin x ) ‘ = lim ∆ x → 0 sin ( x + ∆ x ) — sin x ∆ x
Формула разности синусов позволит нам произвести следующие действия:
( sin x ) ‘ = lim ∆ x → 0 sin ( x + ∆ x ) — sin x ∆ x = = lim ∆ x → 0 2 · sin x + ∆ x — x 2 · cos x + ∆ x + x 2 ∆ x = = lim ∆ x → 0 sin ∆ x 2 · cos x + ∆ x 2 ∆ x 2 = = cos x + 0 2 · lim ∆ x → 0 sin ∆ x 2 ∆ x 2
Наконец, используем первый замечательный предел:
sin ‘ x = cos x + 0 2 · lim ∆ x → 0 sin ∆ x 2 ∆ x 2 = cos x
Итак, производной функции sin x будет cos x .
Совершенно также докажем формулу производной косинуса:
cos ‘ x = lim ∆ x → 0 cos ( x + ∆ x ) — cos x ∆ x = = lim ∆ x → 0 — 2 · sin x + ∆ x — x 2 · sin x + ∆ x + x 2 ∆ x = = — lim ∆ x → 0 sin ∆ x 2 · sin x + ∆ x 2 ∆ x 2 = = — sin x + 0 2 · lim ∆ x → 0 sin ∆ x 2 ∆ x 2 = — sin x
Т.е. производной функции cos x будет – sin x .
Формулы производных тангенса и котангенса выведем на основе правил дифференцирования:
t g ‘ x = sin x cos x ‘ = sin ‘ x · cos x — sin x · cos ‘ x cos 2 x = = cos x · cos x — sin x · ( — sin x ) cos 2 x = sin 2 x + cos 2 x cos 2 x = 1 cos 2 x c t g ‘ x = cos x sin x ‘ = cos ‘ x · sin x — cos x · sin ‘ x sin 2 x = = — sin x · sin x — cos x · cos x sin 2 x = — sin 2 x + cos 2 x sin 2 x = — 1 sin 2 x
Производные обратных тригонометрических функций
Раздел о производной обратных функций дает исчерпывающую информацию о доказательстве формул производных арксинуса, арккосинуса, арктангенса и арккотангенса, поэтому дублировать материал здесь не будем.
Производные гиперболических функций
Вывод формул производных гиперболического синуса, косинуса, тангенса и котангенса осуществим при помощи правила дифференцирования и формулы производной показательной функции:
s h ‘ x = e x — e — x 2 ‘ = 1 2 e x ‘ — e — x ‘ = = 1 2 e x — — e — x = e x + e — x 2 = c h x c h ‘ x = e x + e — x 2 ‘ = 1 2 e x ‘ + e — x ‘ = = 1 2 e x + — e — x = e x — e — x 2 = s h x t h ‘ x = s h x c h x ‘ = s h ‘ x · c h x — s h x · c h ‘ x c h 2 x = c h 2 x — s h 2 x c h 2 x = 1 c h 2 x c t h ‘ x = c h x s h x ‘ = c h ‘ x · s h x — c h x · s h ‘ x s h 2 x = s h 2 x — c h 2 x s h 2 x = — 1 s h 2 x
Рекомендуется выучить формулы из таблицы производных: они не столь сложны для запоминания, но экономят много времени, когда необходимо решать задачи дифференцирования.
Источник