Работа силы тяжести.
Рассмотрим тело, скользящее по наклонной плоскости с углом наклона α и высотой Н. Выразим Δх через H и α:
.
Учитывая, что сила тяжести Fт = mg составляет угол (90° — α) с направлением перемещения, используя формулу , получим выражение для работы силы тяжести Ag:
.
Из этой формулы видно, что работа силы тяжести зависит от высоты и не зависит от угла наклона плоскости.
Отсюда следует, что:
1. работа силы тяжести не зависит от формы траектории, по которой движется тело, а лишь от начального и конечного положения тела;
2. при перемещении тела по замкнутой траектории работа силы тяжести равна нулю, т. е. сила тяжести — консервативная сила (консервативными называются силы, обладающие таким свойством).
Работа сил реакции, как следует из рисунка, равна нулю, поскольку сила реакции (N) направлена перпендикулярно перемещению Δх.
Источник
Работа, мощность, КПД
Сила, перемещающая тело, совершает работу. Работа – это разность энергии тела в начале процесса и в его конце. А мощность – это работа за одну секунду. Коэффициент полезного действия (КПД) – это дробное число. Максимальный КПД равен единице, однако, часто, КПД меньше единицы.
Работы силы, формула
Сила, приложенная к телу и перемещающая его, совершает работу (рис. 1).
Работа силы — это скалярное произведение вектора силы на вектор перемещения.
Работу, совершаемую силой, можно посчитать, используя векторный или скалярный вид записи такой формулы:
Векторный вид записи
Для решения задач правую часть этой формулы удобно записывать в скалярном виде:
\[ \large \boxed < A = \left| \vec\right| \cdot cos(\alpha) >\]
\( F \left( H \right) \) – сила, перемещающая тело;
\( S \left( \text <м>\right) \) – перемещение тела под действием силы;
\( \alpha \) – угол между вектором силы и вектором перемещения тела;
Работу обозначают символом \(A\) и измеряют в Джоулях. Работа – это скалярная величина.
В случае, когда сила постоянная, формула позволяет рассчитать работу, совершенную силой за полное время ее действия.
Если сила изменяется со временем, то в каждый конкретный момент времени будем получать мгновенную работу. Эти, мгновенные значения для разных моментов времени будут различаться.
Рассмотрим несколько случаев, следующих из формулы:
- Когда угол между силой и перемещением острый, работа силы положительная;
- А если угол тупой — работа отрицательная, так как косинус тупого угла отрицательный;
- Если же угол прямой – работа равна нулю. Сила, перпендикулярная перемещению, работу не совершает!
Работа — разность кинетической энергии
Работу можно рассчитать еще одним способом — измеряя кинетическую энергию тела в начале и в конце процесса движения. Рассмотрим такой пример. Пусть автомобиль, движется по горизонтальной прямой и, при этом увеличивает свою скорость (рис. 2). Масса автомобиля 1000 кг. В начале его скорость равнялась 1 м/с. После разгона скорость автомобиля равна 10 метрам в секунду. Найдем работу, которую пришлось проделать, чтобы ускорить этот автомобиль.
Для этого посчитаем энергию движения автомобиля в начале и в конце разгона.
\( E_
\( E_
\( m \left( \text<кг>\right) \) – масса автомобиля;
\( \displaystyle v \left( \frac<\text<м>>
Кинетическую энергию будем вычислять, используя формулу:
\[ \large E_
\[ \large E_
Теперь найдем разницу кинетической энергии в конце и вначале разгона.
\[ \large \Delta E_
\[ \large \Delta E_
Значит, работа, которую потребовалось совершить, чтобы разогнать машину массой 1000 кг от скорости 1 м/с до скорости 10 м/с, равняется 49500 Джоулям.
Примечание: Работа – это разность энергии в конце процесса и в его начале. Можно находить разность кинетической энергии, а можно — разность энергии потенциальной.
Работа силы тяжести — разность потенциальной энергии
Рассмотрим теперь следующий пример. Яблоко массой 0,2 кг упало на садовый стол с ветки, находящейся на высоте 3 метра от поверхности земли. Столешница располагается на высоте 1 метр от поверхности (рис. 3). Найдем работу силы тяжести в этом процессе.
Посчитаем потенциальную энергию яблока до его падения и энергию яблока на столешнице.
\( E_
\( E_
Примечание: Работу можно рассчитать через разность потенциальной энергии тела.
Потенциальную энергию будем вычислять, используя формулу:
\[ \large E_
= m \cdot g \cdot h\]
\( m \left( \text<кг>\right) \) – масса яблока;
\( h \left( \text<м>\right) \) – высота, на которой находится яблоко относительно поверхности земли.
Начальная высота яблока над поверхностью земли равна 3 метрам
\[ \large E_
Потенциальная энергия яблока на столе
\[ \large E_
Теперь найдем разницу потенциальной энергии яблока в конце падения и перед его началом.
\[ \large \Delta E_
= E_
\[ \large \Delta E_
= 2 – 6 = — 4 \left(\text <Дж>\right) \]
Важно помнить: Когда тело падает на землю, его потенциальная энергия уменьшается. Сила тяжести при этом совершает положительную работу!
Чтобы работа получилась положительной, в правой части формулы перед \( \Delta E_
\) дополнительно допишем знак «минус».
Значит, работа, которую потребовалось совершить силе тяжести, чтобы яблоко массой 0,2 кг упало с высоты 3 м на высоту 1 метр, равняется 4 Джоулям.
Примечания:
- Если тело падает на землю, работа силы тяжести положительна;
- Когда мы поднимаем тело над землей, мы совершаем работу против силы тяжести. Наша работа при этом положительна, а работа силы тяжести будет отрицательной;
- Сила тяжести относится к консервативным силам. Для консервативных сил перед разностью потенциальной энергии мы дописываем знак «минус»;
- Работа силы тяжести не зависит от траектории, по которой двигалось тело;
- Работа для силы \(\displaystyle F_<\text<тяж>>\) зависит только от разности высот, в которых тело находилось в конечный и начальный моменты времени.
Рисунок 4 иллюстрирует факт, что для силы \(\displaystyle F_<\text<тяж>>\) работа зависит только от разности высот и не зависит от траектории, по которой тело двигалось.
Мощность
В механике мощность часто обозначают символами N или P и измеряют в Ваттах в честь шотландского изобретателя Джеймса Уатта.
Примечание: Символ \(\vec
Мощность – это работа, совершенная за одну секунду (энергия, затраченная за 1 сек).
Расчет работы осуществляем, используя любую из формул:
\[ \large A = \Delta E_
\[ \large A = \Delta E_
\]
\[ \large A = F \cdot S \cdot cos(\alpha) \]
Разделив эту работу на время, в течение которого она совершалась, получим мощность.
Если работа совершалась равными частями за одинаковые интервалы времени – мощность будет постоянной величиной.
Мощность переменная, когда в некоторые интервалы времени совершалось больше работы.
Еще одна формула для расчета мощности
Есть еще один способ расчета мощности, когда сила перемещает тело и при этом скорость тела не меняется:
\[ \large P = \left( \vec
Формулу можно записать в скалярном виде:
\[ \large P = \left| \vec
\( F \left( H \right) \) – сила, перемещающая тело;
\( \displaystyle v \left( \frac<\text<м>>
\( \alpha \) – угол между вектором силы и вектором скорости тела;
Когда векторы \(\vec
Примечание: Такую формулу для расчета мощности можно получить из выражения для работы силы, разделив обе части этого выражения на время, в течение которого работа совершалась (а если точнее, найдя производную обеих частей уравнения).
КПД – коэффициент полезного действия. Обычно обозначают греческим символом \(\eta\) «эта». Единиц измерения не имеет, выражается либо десятичной дробью, либо в процентах.
Примечания:
- Процент – это дробь, у которой в знаменателе число 100.
- КПД — это либо правильная дробь, или дробь, равная единице.
Вычисляют коэффициент \(\eta\) для какого-либо устройства, механизма или процесса.
\( \large A_<\text<полезная>> \left(\text <Дж>\right)\) – полезная работа;
\(\large A_<\text<вся>> \left(\text <Дж>\right)\) – вся затраченная для выполнения работы энергия;
Примечание: КПД часто меньше единицы, так как всегда есть потери энергии. Коэффициент полезного действия не может быть больше единицы, так как это противоречит закону сохранения энергии.
Величина \(\eta\) является дробной величиной. Если числитель и знаменатель дроби разделить на одно и то же число, полученная дробь будет равна исходной. Используя этот факт, можно вычислять КПД, используя мощности:
Источник
Конспект Работа силы тяжести
Ищем педагогов в команду «Инфоурок»
Работа силы тяжести. Решение задач
Цель урока: определить формулу для работы силы тяжести; определить, что работы силы тяжести не зависит от траектории движения тела; развить практические навыки по решению задач.
1.Организационный момент. Приветствие учащихся, проверка отсутствующих, постановка цели урока.
2.Проверка домашней работы.
3.Изучение нового материала. На предыдущем уроке мы с вами определили формулу для определения работы. Какой формулой определяется работа постоянной силы? (А= FScosα )
Что такое А и S ?
Теперь же применим эту формулу для силы тяжести. Но для начала вспомним, чему равна сила тяжести? ( F = mg )
Рассмотрим случай а) тело падает вертикально вниз. Как мы с вами знаем сила тяжести всегда направленно строго вниз. Для того чтобы определить направление S необходимо вспомнить определение. (Перемещение-это вектор соединяющий начальную и конечную точку. Направлен он от начала к концу)
Т.о. для определения , Так как направление перемещения и силы тяжести совпадают, то α =0 и работа силы тяжести равна:
Рассмотрим случай б) тело двигается вертикально вверх. Т.к. направление силы тяжести и перемещении противоположны, то то α =0 и работа силы тяжести равна .
Т.о. образом если сравнить две формулы по модулю, то они будут одинаковы.
Рассмотрим случай в) тело движется по наклонной плоскости. Работа силы равна скалярному произведению вектора силы на вектор перемещения тела, совершённого под действием данной силы, то есть работа сила тяжести в данном случае будет равна , где
– угол между векторами силы тяжести и перемещения. На рисунке видно, что перемещение (
) представляет собой гипотенузу прямоугольного треугольника, а высота h – катет. Согласно свойству прямоугольного треугольника:
.Следовательно
Т.о. какой можно сделать вывод? (что работа силы тяжести не зависит от траектории движения.)
Рассмотрим последний пример, когда траектория движения будет замкнутая линия. Кто скажет чему будет равна работа и почему? (А=0, т.к. перемещение равно 0)
Отметим!: работа силы тяжести при движении тела по замкнутой траектории равна нулю.
4. Закрепление материала.
Задача 1. Охотник стреляет со скалы под углом 40° к горизонту. За время падения пули работа силы тяжести составила 5 Дж. Если пуля вошла в землю на расстоянии 250 м от скалы, то какова её масса?
Задача 2. Находясь на Нептуне, тело совершило перемещение так, как показано на рисунке. При этом перемещении работа силы тяжести составила 840 Дж. Если масса данного тела равна 5 кг, то каково ускорение свободного падения на Нептуне?
Источник