Производная синуса равна положительному косинусу одно и того же аргумента: $$ (\sin x)’ = \cos x $$
Если же аргумент синуса представляе собой функцию $ f(x) $, то производная синуса сложной функции находится по формуле: $$ (\sin f(x))’ = \cos f(x) \cdot ( f(x) )’ = f'(x) \cos f(x) $$
Пример 1
Найти производную синуса двойного угла: $ y = \sin 2x $
Решение
Так как аргумент синуса представляет собой сложную функцию $ f(x)=2x $, то используем вторую формулу.
Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!
Ответ
$$ y’ = 2\sin 2x $$
Пример 2
Чему равна производная синуса в квадрате? $ y = \sin^2 x $
Решение
В этом примере синус представляет собой степенную функцию. Поэтому сначала берем производную по правилу: $ (x^p)’=px^ $, а затем производную от $ \sin x $.
$$ y’=(\sin^2 x)’ = 2\sin^2 x \cdot (\sin x)’ = 2\sin^2 x \cdot \cos x $$
Ответ
$$ y’ = 2\sin^2 x \cos x $$
Пример 3
Найти производную синуса в кубе: $ y = \sin^3 x $
Решение
Это задание полностью аналогичное предыдущему, только вместо квадрата стоит куб:
$$ y’ = (\sin^3 x)’ = 3\sin^2 x \cdot (\sin x)’ = 3\sin^2 x \cdot \cos x $$
Ответ
$$ y’ = 3\sin^2 x \cos x $$
Пример 4
Чему равна производная сложной функции синус корень икс? $ y = \sin \sqrt $
Решение
Формула производной квадратного корня: $$ (\sqrt)’ = \frac<1><2\sqrt> $$
Возвращаемся к заданию и находим производную:
Источник
Таблица производных. Доказательство формул
Приведем сводную таблицу для удобства и наглядности при изучении темы.
Константаy = C
Степенная функция y = x p
( x p ) ‘ = p · x p — 1
Показательная функцияy = a x
( a x ) ‘ = a x · ln a
В частности, приa = eимеемy = e x
Логарифмическая функция
( log a x ) ‘ = 1 x · ln a
В частности, приa = eимеемy = ln x
Тригонометрические функции
( sin x ) ‘ = cos x ( cos x ) ‘ = — sin x ( t g x ) ‘ = 1 cos 2 x ( c t g x ) ‘ = — 1 sin 2 x
Обратные тригонометрические функции
( a r c sin x ) ‘ = 1 1 — x 2 ( a r c cos x ) ‘ = — 1 1 — x 2 ( a r c t g x ) ‘ = 1 1 + x 2 ( a r c c t g x ) ‘ = — 1 1 + x 2
Гиперболические функции
( s h x ) ‘ = c h x ( c h x ) ‘ = s h x ( t h x ) ‘ = 1 c h 2 x ( c t h x ) ‘ = — 1 s h 2 x
Разберем, каким образом были получены формулы указанной таблицы или, иначе говоря, докажем вывод формул производных для каждого вида функций.
Производная постоянной
Для того, чтобы вывести данную формулу, возьмем за основу определение производной функции в точке. Используем x 0 = x , где x принимает значение любого действительного числа, или, иначе говоря, x является любым числом из области определения функции f ( x ) = C . Составим запись предела отношения приращения функции к приращению аргумента при ∆ x → 0 :
lim ∆ x → 0 ∆ f ( x ) ∆ x = lim ∆ x → 0 C — C ∆ x = lim ∆ x → 0 0 ∆ x = 0
Обратите внимание, что под знак предела попадает выражение 0 ∆ x . Оно не есть неопределенность «ноль делить на ноль», поскольку в числителе записана не бесконечно малая величина, а именно нуль. Иначе говоря, приращение постоянной функции всегда есть нуль.
Итак, производная постоянной функции f ( x ) = C равна нулю на всей области определения.
Даны постоянные функции:
f 1 ( x ) = 3 , f 2 ( x ) = a , a ∈ R , f 3 ( x ) = 4 . 13 7 22 , f 4 ( x ) = 0 , f 5 ( x ) = — 8 7
Необходимо найти их производные.
Решение
Опишем заданные условия. В первой функции мы видим производную натурального числа 3 . В следующем примере необходимо брать производную от а , где а — любое действительное число. Третий пример задает нам производную иррационального числа 4 . 13 7 22 , четвертый — производную нуля (нуль – целое число). Наконец, в пятом случае имеем производную рациональной дроби — 8 7 .
Ответ: производные заданных функций есть нуль при любом действительном x (на всей области определения)
f 1 ‘ ( x ) = ( 3 ) ‘ = 0 , f 2 ‘ ( x ) = ( a ) ‘ = 0 , a ∈ R , f 3 ‘ ( x ) = 4 . 13 7 22 ‘ = 0 , f 4 ‘ ( x ) = 0 ‘ = 0 , f 5 ‘ ( x ) = — 8 7 ‘ = 0
Производная степенной функции
Переходим к степенной функции и формуле ее производной, имеющей вид: ( x p ) ‘ = p · x p — 1 , где показатель степени p является любым действительным числом.
Приведем доказательство формулы, когда показатель степени – натуральное число: p = 1 , 2 , 3 , …
Вновь опираемся на определение производной. Составим запись предела отношения приращения степенной функции к приращению аргумента:
( x p ) ‘ = lim ∆ x → 0 = ∆ ( x p ) ∆ x = lim ∆ x → 0 ( x + ∆ x ) p — x p ∆ x
Чтобы упростить выражение в числителе, используем формулу бинома Ньютона:
( x + ∆ x ) p — x p = C p 0 + x p + C p 1 · x p — 1 · ∆ x + C p 2 · x p — 2 · ( ∆ x ) 2 + . . . + + C p p — 1 · x · ( ∆ x ) p — 1 + C p p · ( ∆ x ) p — x p = = C p 1 · x p — 1 · ∆ x + C p 2 · x p — 2 · ( ∆ x ) 2 + . . . + C p p — 1 · x · ( ∆ x ) p — 1 + C p p · ( ∆ x ) p
( x p ) ‘ = lim ∆ x → 0 ∆ ( x p ) ∆ x = lim ∆ x → 0 ( x + ∆ x ) p — x p ∆ x = = lim ∆ x → 0 ( C p 1 · x p — 1 · ∆ x + C p 2 · x p — 2 · ( ∆ x ) 2 + . . . + C p p — 1 · x · ( ∆ x ) p — 1 + C p p · ( ∆ x ) p ) ∆ x = = lim ∆ x → 0 ( C p 1 · x p — 1 + C p 2 · x p — 2 · ∆ x + . . . + C p p — 1 · x · ( ∆ x ) p — 2 + C p p · ( ∆ x ) p — 1 ) = = C p 1 · x p — 1 + 0 + 0 + . . . + 0 = p ! 1 ! · ( p — 1 ) ! · x p — 1 = p · x p — 1
Так, мы доказали формулу производной степенной функции, когда показатель степени – натуральное число.
Чтобы привести доказательство для случая, когда p — любое действительное число, отличное от нуля, используем логарифмическую производную (здесь следует понимать отличие от производной логарифмической функции). Чтобы иметь более полное понимание желательно изучить производную логарифмической функции и дополнительно разобраться с производной неявно заданной функции и производной сложной функции.
Рассмотрим два случая: когда x положительны и когда x отрицательны.
Итак, x > 0 . Тогда: x p > 0 . Логарифмируем равенство y = x p по основанию e и применим свойство логарифма:
y = x p ln y = ln x p ln y = p · ln x
На данном этапе получили неявно заданную функцию. Определим ее производную:
( ln y ) ‘ = ( p · ln x ) 1 y · y ‘ = p · 1 x ⇒ y ‘ = p · y x = p · x p x = p · x p — 1
Теперь рассматриваем случай, когда x – отрицательное число.
Если показатель p есть четное число, то степенная функция определяется и при x 0 , причем является четной: y ( x ) = — y ( ( — x ) p ) ‘ = — p · ( — x ) p — 1 · ( — x ) ‘ = = p · ( — x ) p — 1 = p · x p — 1
Тогда x p 0 и возможно составить доказательство, используя логарифмическую производную.
Если p есть нечетное число, тогда степенная функция определена и при x 0 , причем является нечетной: y ( x ) = — y ( — x ) = — ( — x ) p . Тогда x p 0 , а значит логарифмическую производную задействовать нельзя. В такой ситуации возможно взять за основу доказательства правила дифференцирования и правило нахождения производной сложной функции:
y ‘ ( x ) = ( — ( — x ) p ) ‘ = — ( ( — x ) p ) ‘ = — p · ( — x ) p — 1 · ( — x ) ‘ = = p · ( — x ) p — 1 = p · x p — 1
Последний переход возможен в силу того, что если p — нечетное число, то p — 1 либо четное число, либо нуль (при p = 1 ), поэтому, при отрицательных x верно равенство ( — x ) p — 1 = x p — 1 .
Итак, мы доказали формулу производной степенной функции при любом действительном p .
f 1 ( x ) = 1 x 2 3 , f 2 ( x ) = x 2 — 1 4 , f 3 ( x ) = 1 x log 7 12
Определите их производные.
Решение
Часть заданных функций преобразуем в табличный вид y = x p , опираясь на свойства степени, а затем используем формулу:
f 1 ( x ) = 1 x 2 3 = x — 2 3 ⇒ f 1 ‘ ( x ) = — 2 3 · x — 2 3 — 1 = — 2 3 · x — 5 3 f 2 ‘ ( x ) = x 2 — 1 4 = 2 — 1 4 · x 2 — 1 4 — 1 = 2 — 1 4 · x 2 — 5 4 f 3 ( x ) = 1 x log 7 12 = x — log 7 12 ⇒ f 3 ‘ ( x ) = — log 7 12 · x — log 7 12 — 1 = — log 7 12 · x — log 7 12 — log 7 7 = — log 7 12 · x — log 7 84
Производная показательной функции
Выведем формулу производной, взяв за основу определение:
( a x ) ‘ = lim ∆ x → 0 a x + ∆ x — a x ∆ x = lim ∆ x → 0 a x ( a ∆ x — 1 ) ∆ x = a x · lim ∆ x → 0 a ∆ x — 1 ∆ x = » open=» 0 0
Мы получили неопределенность. Чтобы раскрыть ее, запишем новую переменную z = a ∆ x — 1 ( z → 0 при ∆ x → 0 ). В таком случае a ∆ x = z + 1 ⇒ ∆ x = log a ( z + 1 ) = ln ( z + 1 ) ln a . Для последнего перехода использована формула перехода к новому основанию логарифма.
Осуществим подстановку в исходный предел:
( a x ) ‘ = a x · lim ∆ x → 0 a ∆ x — 1 ∆ x = a x · ln a · lim ∆ x → 0 1 1 z · ln ( z + 1 ) = = a x · ln a · lim ∆ x → 0 1 ln ( z + 1 ) 1 z = a x · ln a · 1 ln lim ∆ x → 0 ( z + 1 ) 1 z
Вспомним второй замечательный предел и тогда получим формулу производной показательной функции:
( a x ) ‘ = a x · ln a · 1 ln lim z → 0 ( z + 1 ) 1 z = a x · ln a · 1 ln e = a x · ln a
Даны показательные функции:
f 1 ( x ) = 2 3 x , f 2 ( x ) = 5 3 x , f 3 ( x ) = 1 ( e ) x
Необходимо найти их производные.
Решение
Используем формулу производной показательной функции и свойства логарифма:
f 1 ‘ ( x ) = 2 3 x ‘ = 2 3 x · ln 2 3 = 2 3 x · ( ln 2 — ln 3 ) f 2 ‘ ( x ) = 5 3 x ‘ = 5 3 x · ln 5 1 3 = 1 3 · 5 3 x · ln 5 f 3 ‘ ( x ) = 1 ( e ) x ‘ = 1 e x ‘ = 1 e x · ln 1 e = 1 e x · ln e — 1 = — 1 e x
Производная логарифмической функции
Приведем доказательство формулы производной логарифмической функции для любых x в области определения и любых допустимых значениях основания а логарифма. Опираясь на определение производной, получим:
( log a x ) ‘ = lim ∆ x → 0 log a ( x + ∆ x ) — log a x ∆ x = lim ∆ x → 0 log a x + ∆ x x ∆ x = = lim ∆ x → 0 1 ∆ x · log a 1 + ∆ x x = lim ∆ x → 0 log a 1 + ∆ x x 1 ∆ x = = lim ∆ x → 0 log a 1 + ∆ x x 1 ∆ x · x x = lim ∆ x → 0 1 x · log a 1 + ∆ x x x ∆ x = = 1 x · log a lim ∆ x → 0 1 + ∆ x x x ∆ x = 1 x · log a e = 1 x · ln e ln a = 1 x · ln a
Из указанной цепочки равенств видно, что преобразования строились на основе свойства логарифма. Равенство lim ∆ x → 0 1 + ∆ x x x ∆ x = e является верным в соответствии со вторым замечательным пределом.
Заданы логарифмические функции:
f 1 ( x ) = log ln 3 x , f 2 ( x ) = ln x
Необходимо вычислить их производные.
Решение
Применим выведенную формулу:
f 1 ‘ ( x ) = ( log ln 3 x ) ‘ = 1 x · ln ( ln 3 ) ; f 2 ‘ ( x ) = ( ln x ) ‘ = 1 x · ln e = 1 x
Итак, производная натурального логарифма есть единица, деленная на x .
Производные тригонометрических функций
Используем некоторые тригонометрические формулы и первый замечательный предел, чтобы вывести формулу производной тригонометрической функции.
Согласно определению производной функции синуса, получим:
( sin x ) ‘ = lim ∆ x → 0 sin ( x + ∆ x ) — sin x ∆ x
Формула разности синусов позволит нам произвести следующие действия:
( sin x ) ‘ = lim ∆ x → 0 sin ( x + ∆ x ) — sin x ∆ x = = lim ∆ x → 0 2 · sin x + ∆ x — x 2 · cos x + ∆ x + x 2 ∆ x = = lim ∆ x → 0 sin ∆ x 2 · cos x + ∆ x 2 ∆ x 2 = = cos x + 0 2 · lim ∆ x → 0 sin ∆ x 2 ∆ x 2
Наконец, используем первый замечательный предел:
sin ‘ x = cos x + 0 2 · lim ∆ x → 0 sin ∆ x 2 ∆ x 2 = cos x
Итак, производной функции sin x будет cos x .
Совершенно также докажем формулу производной косинуса:
cos ‘ x = lim ∆ x → 0 cos ( x + ∆ x ) — cos x ∆ x = = lim ∆ x → 0 — 2 · sin x + ∆ x — x 2 · sin x + ∆ x + x 2 ∆ x = = — lim ∆ x → 0 sin ∆ x 2 · sin x + ∆ x 2 ∆ x 2 = = — sin x + 0 2 · lim ∆ x → 0 sin ∆ x 2 ∆ x 2 = — sin x
Т.е. производной функции cos x будет – sin x .
Формулы производных тангенса и котангенса выведем на основе правил дифференцирования:
t g ‘ x = sin x cos x ‘ = sin ‘ x · cos x — sin x · cos ‘ x cos 2 x = = cos x · cos x — sin x · ( — sin x ) cos 2 x = sin 2 x + cos 2 x cos 2 x = 1 cos 2 x c t g ‘ x = cos x sin x ‘ = cos ‘ x · sin x — cos x · sin ‘ x sin 2 x = = — sin x · sin x — cos x · cos x sin 2 x = — sin 2 x + cos 2 x sin 2 x = — 1 sin 2 x
Производные обратных тригонометрических функций
Раздел о производной обратных функций дает исчерпывающую информацию о доказательстве формул производных арксинуса, арккосинуса, арктангенса и арккотангенса, поэтому дублировать материал здесь не будем.
Производные гиперболических функций
Вывод формул производных гиперболического синуса, косинуса, тангенса и котангенса осуществим при помощи правила дифференцирования и формулы производной показательной функции:
s h ‘ x = e x — e — x 2 ‘ = 1 2 e x ‘ — e — x ‘ = = 1 2 e x — — e — x = e x + e — x 2 = c h x c h ‘ x = e x + e — x 2 ‘ = 1 2 e x ‘ + e — x ‘ = = 1 2 e x + — e — x = e x — e — x 2 = s h x t h ‘ x = s h x c h x ‘ = s h ‘ x · c h x — s h x · c h ‘ x c h 2 x = c h 2 x — s h 2 x c h 2 x = 1 c h 2 x c t h ‘ x = c h x s h x ‘ = c h ‘ x · s h x — c h x · s h ‘ x s h 2 x = s h 2 x — c h 2 x s h 2 x = — 1 s h 2 x
Рекомендуется выучить формулы из таблицы производных: они не столь сложны для запоминания, но экономят много времени, когда необходимо решать задачи дифференцирования.
Источник
Таблица производных функций
О чем эта статья:
10 класс, 11 класс, ЕГЭ/ОГЭ
Что такое производная и зачем она нужна
Прежде чем переходить к таблице для вычисления производных, дадим определение производной. В учебнике оно звучит так:
Производная функции — это предел отношения приращения функции к приращению ее аргумента, при условии, что приращение аргумента стремится к нулю.
Если же говорить простыми словами, то производная функции описывает, как и с какой скоростью эта функция меняется в данной конкретной точке. Процесс нахождения производной называется дифференцированием.
Объясним на примере: допустим, Маша решила по утрам делать зарядку и стоять в планке. В первую неделю она держалась каждый день по 10 секунд, но начиная со второй недели смогла стоять в планке с каждым днем на 3 секунды дольше. Успехи Маши можно описать следующими графиками:
Очевидно, что в первую неделю результаты Маши не менялись (т. е. были константой), скорость прироста оставалась нулевой. Если мы заглянем в таблицу производных простых функций, то увидим, что производная константы равна нулю.
Во вторую неделю время выполнения планки с 10 сек начало увеличиваться на 3 сек ежедневно.
Снова смотрим в таблицу дифференцирования производных, где указано, что производная от х равна 1.
Вот так с помощью таблицы производных и элементарной математики мы докажем, что успехи Маши росли со скоростью 3 сек в день.
Это был очень простой пример, который в общих чертах объясняет азы дифференциального исчисления и помогает понять, для чего нужны формулы из таблицы производных функций. Но разобраться в решении задач, где скорость меняется нелинейно, конечно, не так просто.
Производные основных элементарных функций
Таблица производных для 10 и 11 класса может включать только элементарные часто встречающиеся функции. Приведем несколько формул, которых достаточно для решения большинства задач.