- Уравнение прямой, которая проходит через две заданные точки: примеры, решения
- Уравнение прямой, проходящей через две заданные точки на плоскости
- Уравнения прямой, которая проходит через две заданные точки в трехмерном пространстве
- Уравнение прямой, проходящей через 2 точки
- Суть уравнения прямой, проходящей через две заданные точки
- Уравнение прямой в отрезках
- Как записать формулу, канонический вид
- Параметрическое уравнение прямой, проходящей через две точки
- Примеры задач с решением
- Урок 29. Нахождение уравнение прямой по двум точкам
- Сведения из вычислительной геометрии
- Уравнение прямой
Уравнение прямой, которая проходит через две заданные точки: примеры, решения
Данная статья раскрывает получение уравнения прямой, проходящей через две заданные точки в прямоугольной системе координат, расположенной на плоскости. Выведем уравнение прямой, проходящей через две заданные точки в прямоугольной системе координат. Наглядно покажем и решим несколько примеров, касающихся пройденного материала.
Уравнение прямой, проходящей через две заданные точки на плоскости
Перед получением уравнения прямой, проходящей через две заданные точки необходимо обратить внимание на некоторые факты. Существует аксиома, которая говорит о том, что через две несовпадающие точки на плоскости возможно провести прямую и только одну. Иначе говоря, две заданные точки плоскости определяются прямой линией, проходящей через эти точки.
Если плоскость задана прямоугольной системой координат Оху, то любая изображенная в нем прямая будет соответствовать уравнению прямой на плоскости. Также имеется связь с направляющим вектором прямой. Этих данных достаточно для того, чтобы произвести составление уравнения прямой, проходящей через две заданные точки.
Рассмотрим на примере решения подобной задачи. Необходимо составить уравнение прямой a , проходящей через две несовпадающие точки M 1 ( x 1 , y 1 ) и M 2 ( x 2 , y 2 ) , находящиеся в декартовой системе координат.
В каноническом уравнении прямой на плоскости, имеющего вид x — x 1 a x = y — y 1 a y , задается прямоугольная система координат О х у с прямой, которая пересекается с ней в точке с координатами M 1 ( x 1 , y 1 ) с направляющим вектором a → = ( a x , a y ) .
Необходимо составить каноническое уравнение прямой a , которая пройдет через две точки с координатами M 1 ( x 1 , y 1 ) и M 2 ( x 2 , y 2 ) .
Прямая а имеет направляющий вектор M 1 M 2 → с координатами ( x 2 — x 1 , y 2 — y 1 ) , так как пересекает точки М 1 и М 2 . Мы получили необходимые данные для того, чтобы преобразовать каноническое уравнение с координатами направляющего вектора M 1 M 2 → = ( x 2 — x 1 , y 2 — y 1 ) и координатами лежащих на них точках M 1 ( x 1 , y 1 ) и M 2 ( x 2 , y 2 ) . Получим уравнение вида x — x 1 x 2 — x 1 = y — y 1 y 2 — y 1 или x — x 2 x 2 — x 1 = y — y 2 y 2 — y 1 .
Рассмотрим рисунок, приведенный ниже.
Следуя по вычислениям, запишем параметрические уравнения прямой на плоскости, которое проходит через две точки с координатами M 1 ( x 1 , y 1 ) и M 2 ( x 2 , y 2 ) . Получим уравнение вида x = x 1 + ( x 2 — x 1 ) · λ y = y 1 + ( y 2 — y 1 ) · λ или x = x 2 + ( x 2 — x 1 ) · λ y = y 2 + ( y 2 — y 1 ) · λ .
Рассмотрим подробней на решении нескольких примеров.
Записать уравнение прямой, проходящей через 2 заданные точки с координатами M 1 — 5 , 2 3 , M 2 1 , — 1 6 .
Каноническим уравнением для прямой, пересекающейся в двух точках с координатами x 1 , y 1 и x 2 , y 2 принимает вид x — x 1 x 2 — x 1 = y — y 1 y 2 — y 1 . По условию задачи имеем, что x 1 = — 5 , y 1 = 2 3 , x 2 = 1 , y 2 = — 1 6 . Необходимо подставить числовые значения в уравнение x — x 1 x 2 — x 1 = y — y 1 y 2 — y 1 . Отсюда получим, что каноническое уравнение примет вид x — ( — 5 ) 1 — ( — 5 ) = y — 2 3 — 1 6 — 2 3 ⇔ x + 5 6 = y — 2 3 — 5 6 .
Ответ: x + 5 6 = y — 2 3 — 5 6 .
При необходимости решения задачи с другим видом уравнения, то для начала можно перейти к каноническому, так как из него проще прийти к любому другому.
Составить общее уравнение прямой, проходящей через точки с координатами M 1 ( 1 , 1 ) и M 2 ( 4 , 2 ) в системе координат О х у .
Для начала необходимо записать каноническое уравнение заданной прямой, которая проходит через заданные две точки. Получим уравнение вида x — 1 4 — 1 = y — 1 2 — 1 ⇔ x — 1 3 = y — 1 1 .
Приведем каноническое уравнение к искомому виду, тогда получим:
x — 1 3 = y — 1 1 ⇔ 1 · x — 1 = 3 · y — 1 ⇔ x — 3 y + 2 = 0
Ответ: x — 3 y + 2 = 0 .
Примеры таких заданий были рассмотрены в школьных учебниках на уроках алгебры. Школьные задачи отличались тем, что известным было уравнение прямой с угловым коэффициентом, имеющее вид y = k x + b . Если необходимо найти значение углового коэффициента k и числа b , при которых уравнение y = k x + b определяет линию в системе О х у , которая проходит через точки M 1 ( x 1 , y 1 ) и M 2 ( x 2 , y 2 ) , где x 1 ≠ x 2 . Когда x 1 = x 2 , тогда угловой коэффициент принимает значение бесконечности, а прямая М 1 М 2 определена общим неполным уравнением вида x — x 1 = 0 .
Потому как точки М 1 и М 2 находятся на прямой, тогда их координаты удовлетворяют уравнению y 1 = k x 1 + b и y 2 = k x 2 + b . Следует решить систему уравнений y 1 = k x 1 + b y 2 = k x 2 + b относительно k и b .
Для этого найдем k = y 2 — y 1 x 2 — x 1 b = y 1 — y 2 — y 1 x 2 — x 1 · x 1 или k = y 2 — y 1 x 2 — x 1 b = y 2 — y 2 — y 1 x 2 — x 1 · x 2 .
С такими значениями k и b уравнение прямой, проходящее через заданные две точки, принимает следующий вид y = y 2 — y 1 x 2 — x 1 · x + y 2 — y 2 — y 1 x 2 — x 1 · x 1 или y = y 2 — y 1 x 2 — x 1 · x + y 2 — y 2 — y 1 x 2 — x 1 · x 2 .
Запомнить сразу такое огромное количество формул не получится. Для этого необходимо учащать количество повторений в решениях задач.
Записать уравнение прямой с угловым коэффициентом, проходящей через точки с координатами M 2 ( 2 , 1 ) и y = k x + b .
Для решения задачи применяем формулу с угловым коэффициентом, имеющую вид y = k x + b . Коэффициенты k и b должны принимать такое значение, чтобы данное уравнение соответствовало прямой, проходящей через две точки с координатами M 1 ( — 7 , — 5 ) и M 2 ( 2 , 1 ) .
Точки М 1 и М 2 располагаются на прямой, тогда их координаты должны обращать уравнение y = k x + b верное равенство. Отсюда получаем, что — 5 = k · ( — 7 ) + b и 1 = k · 2 + b . Объединим уравнение в систему — 5 = k · — 7 + b 1 = k · 2 + b и решим.
При подстановке получаем, что
— 5 = k · — 7 + b 1 = k · 2 + b ⇔ b = — 5 + 7 k 2 k + b = 1 ⇔ b = — 5 + 7 k 2 k — 5 + 7 k = 1 ⇔ ⇔ b = — 5 + 7 k k = 2 3 ⇔ b = — 5 + 7 · 2 3 k = 2 3 ⇔ b = — 1 3 k = 2 3
Теперь значения k = 2 3 и b = — 1 3 подвергаются подстановке в уравнение y = k x + b . Получаем, что искомым уравнением, проходящим через заданные точки, будет уравнение, имеющее вид y = 2 3 x — 1 3 .
Такой способ решения предопределяет траты большого количества времени. Существует способ, при котором задание решается буквально в два действия.
Запишем каноническое уравнение прямой, проходящей через M 2 ( 2 , 1 ) и M 1 ( — 7 , — 5 ) , имеющее вид x — ( — 7 ) 2 — ( — 7 ) = y — ( — 5 ) 1 — ( — 5 ) ⇔ x + 7 9 = y + 5 6 .
Теперь переходим к уравнению в угловым коэффициентом. Получаем, что: x + 7 9 = y + 5 6 ⇔ 6 · ( x + 7 ) = 9 · ( y + 5 ) ⇔ y = 2 3 x — 1 3 .
Ответ: y = 2 3 x — 1 3 .
Уравнения прямой, которая проходит через две заданные точки в трехмерном пространстве
Если в трехмерном пространстве имеется прямоугольная система координат О х у z с двумя заданными несовпадающими точками с координатами M 1 ( x 1 , y 1 , z 1 ) и M 2 ( x 2 , y 2 , z 2 ) , проходящая через них прямая M 1 M 2 , необходимо получить уравнение этой прямой.
Имеем, что канонические уравнения вида x — x 1 a x = y — y 1 a y = z — z 1 a z и параметрические вида x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ способны задать линию в системе координат О х у z , проходящую через точки, имеющие координаты ( x 1 , y 1 , z 1 ) с направляющим вектором a → = ( a x , a y , a z ) .
Прямая M 1 M 2 имеет направляющий вектор вида M 1 M 2 → = ( x 2 — x 1 , y 2 — y 1 , z 2 — z 1 ) , где прямая проходит через точку M 1 ( x 1 , y 1 , z 1 ) и M 2 ( x 2 , y 2 , z 2 ) , отсюда каноническое уравнение может быть вида x — x 1 x 2 — x 1 = y — y 1 y 2 — y 1 = z — z 1 z 2 — z 1 или x — x 2 x 2 — x 1 = y — y 2 y 2 — y 1 = z — z 2 z 2 — z 1 , в свою очередь параметрические x = x 1 + ( x 2 — x 1 ) · λ y = y 1 + ( y 2 — y 1 ) · λ z = z 1 + ( z 2 — z 1 ) · λ или x = x 2 + ( x 2 — x 1 ) · λ y = y 2 + ( y 2 — y 1 ) · λ z = z 2 + ( z 2 — z 1 ) · λ .
Рассмотрим рисунок, на котором изображены 2 заданные точки в пространстве и уравнение прямой.
Написать уравнение прямой, определенной в прямоугольной системе координат О х у z трехмерного пространства, проходящей через заданные две точки с координатами M 1 ( 2 , — 3 , 0 ) и M 2 ( 1 , — 3 , — 5 ) .
Необходимо найти каноническое уравнение. Так как речь идет о трехмерном пространстве, значит при прохождении прямой через заданные точки, искомое каноническое уравнение примет вид x — x 1 x 2 — x 1 = y — y 1 y 2 — y 1 = z — z 1 z 2 — z 1 .
По условию имеем, что x 1 = 2 , y 1 = — 3 , z 1 = 0 , x 2 = 1 , y 2 = — 3 , z 2 = — 5 . Отсюда следует, что необходимые уравнения запишутся таким образом:
x — 2 1 — 2 = y — ( — 3 ) — 3 — ( — 3 ) = z — 0 — 5 — 0 ⇔ x — 2 — 1 = y + 3 0 = z — 5
Ответ: x — 2 — 1 = y + 3 0 = z — 5 .
Источник
Уравнение прямой, проходящей через 2 точки
Суть уравнения прямой, проходящей через две заданные точки
Можно представить, что на плоскости с координатами Oxy расположена пара точек: \(M_<0>(x_<0>,y_<0>)\) , \(M_<1>(x_<1>,y_<1>)\)
Необходимо сделать вывод формулы для прямой, которая пересекает эти заданные точки.
Точка \(М (х, у)\) соответствует прямой \(M_ <0>M_<1>\) только в том случае, когда ее радиус-вектор \(\vec
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Где t является некоторым действительным числом (параметром). Координатная форма уравнения имеет следующий вид:
Данное равенство в алгебре называют аффинным уравнением прямой с пересечением двух точек в пространстве: \(M_<0>(x_<0>,y_<0>)\) и \(M_<1>(x_<1>,y_<1>)\) .
Определив параметр t с помощью первого и второго уравнений системы, можно получить доказательство следующего соотношения:
Если исключить коэффициент t, то можно вывести уравнение прямой, проходящей через две точки: \(M_<0>(x_<0>,y_<0>)\) и \(M_<1>(x_<1>,y_<1>)\) .
Формула будет иметь следующий вид:
Данное равенство вытекает из канонического уравнения, если выбрать направляющим вектором:
Вектор \(\vec
То есть, замещая следующие параметры:
Уравнение прямой в отрезках
Пусть координатные оси включают две точки: \(X_<1>\left(x_<1>,0 \right)\) и \(Y_<1>\left(0, y_ <1>\right)\)
Следует отметить следующее условие:
Необходимо записать уравнение прямой, которая проходит через заданные точки, подставив в формулу:
В результате уравнение принимает следующий вид:
Если поменять местами правую и левую части уравнения, то равенство примет такой вид:
Данную формулу называют уравнением прямой в отрезках. С помощью прямой, которая пересекает точки: \(X_<1>\left(x_<1>,0 \right)\) и \(Y_<1>\left(0, y_ <1>\right)\)
координатные оси делят на отрезки х1 на оси абсцисс и у1 на оси ординат. Длины отрезков будут рассчитаны следующим образом:
Как записать формулу, канонический вид
Какой-либо вектор, отличный от нуля, проходит по данной прямой или параллельно ей, называют направляющим вектором этой прямой. Для обозначения направляющего вектора произвольной прямой используют букву \(\bar\)
Координаты данного вектора обозначают с помощью букв l, m, n. Таким образом, можно прийти к следующему уравнению:
Уравнение в таком виде называют каноническим.
Параметрическое уравнение прямой, проходящей через две точки
Канонические уравнения для прямой, которая пересекает следующие точки:
будет записано в следующем виде:
Равные отношения можно обозначить буквой t в канонических уравнениях. В итоге они приобретают такой вид:
Исход из этого, получается равенство:
Данные равенства являются параметрическими уравнениями прямой, которая пересекает точку \(M_<0>\left(x_<0>;y_<0>; z \right)\) в направлении вектора \(\bar=\left\
В данном случае t является произвольно изменяющимся параметром, x, y, z представляют собой функции от t. Если изменяется t, то значения x, y, z также меняются. Таким образом, точка M (x; y; z) перемещается вдоль прямой. Если параметр t использовать в качестве переменного времени, а уравнения представить в виде формул, описывающих движение точки М, то с помощью данных уравнений можно определить прямолинейное и равномерное движение точки М. При t равным 0 точка М будет совпадать с точкой M0.
Скорость V точки М обладает постоянным значением и рассчитывается по формуле:
Примеры задач с решением
Задача 1
Необходимо построить прямую, которая проходит через следующие точки: А (2, 1, 1), В (3, 1, -2).
Решение
Уравнение прямой, которая проходит через точки:
будет иметь следующий вид:
После того, как координаты точек А и В будут применены к первому уравнению, оно будет записано в такой форме:
После некоторых преобразований получается:
В данном случае наличие ноля в знаменателе не обозначает деление на ноль. Параметрическое уравнение прямой будет записано таким образом:
Если выразить переменные x, y, z с помощью параметра t, в итоге получится:
Ответ: каноническое уравнение прямой, проходящей через точки A(2, 1, 1), B(3, 1, -2), будет записано в следующем виде:
Параметрическое уравнение прямой, проходящей через точки A(2, 1, 1), B(3, 1, -2), будет записано в следующем виде:
Задача 2
Требуется построить прямую, которая проходит через точки А (1, 1/5, 1) и В (-2, 1/2, -2).
Решение
Уравнение для прямой, которая пересекает заданные точки:
будет записано таким образом:
После подстановки координат точек А и В в исходную формулу, она приобретет такой вид:
Далее можно записать параметрическое уравнение прямой:
Выразив переменные x, y, z с помощью параметра t, можно получить следующее уравнение:
Ответ: каноническое уравнение прямой, пересекающей заданные точки A(1, 1/5, 1) и B(−2, 1/2, −2) записано в следующем виде:
параметрическое уравнение прямой, проходящей через точки A(1, 1/5, 1) и B(−2, 1/2, −2) имеет следующий вид:
Источник
Урок 29. Нахождение уравнение прямой по двум точкам
Урок из серии «Геометрические алгоритмы»
Здравствуйте, дорогой читатель!
Сегодня мы начнем изучать алгоритмы, связанные с геометрией. Дело в том, что олимпиадных задач по информатике, связанных с вычислительной геометрией, достаточно много и решение таких задач часто вызывают затруднения.
За несколько уроков мы рассмотрим ряд элементарных подзадач, на которые опирается решение большинства задач вычислительной геометрии.
На этом уроке мы составим программу для нахождения уравнения прямой, проходящей через заданные две точки. Для решения геометрических задач нам понадобятся некоторые знания из вычислительной геометрии. Часть урока мы посвятим знакомству с ними.
Сведения из вычислительной геометрии
Вычислительная геометрия – это раздел информатики, изучающий алгоритмы решения геометрических задач.
Исходными данными для таких задач могут быть множество точек на плоскости, набор отрезков, многоугольник (заданный например, списком своих вершин в порядке движения по часовой стрелке) и т.п.
Результатом может быть либо ответ на какой то вопрос (типа принадлежит ли точка отрезку, пересекаются ли два отрезка, …), либо какой-то геометрический объект (например, наименьший выпуклый многоугольник, соединяющий заданные точки, площадь многоугольника, и т.п.).
Мы будем рассматривать задачи вычислительной геометрии только на плоскости и только в декартовой системе координат.
Векторы и координаты
Чтобы применять методы вычислительной геометрии, необходимо геометрические образы перевести на язык чисел. Будем считать, что на плоскости задана декартова система координат, в которой направление поворота против часовой стрелки называется положительным.
Теперь геометрические объекты получают аналитическое выражение. Так, чтобы задать точку, достаточно указать её координаты: пару чисел (x; y). Отрезок можно задать, указав координаты его концов, прямую можно задать, указав координаты пары ее точек.
Но основным инструментом при решении задач у нас будут векторы. Напомню поэтому некоторые сведения о них.
Отрезок АВ, у которого точку А считают началом (точкой приложения), а точку В – концом, называют вектором АВ и обозначают либо , либо жирной строчной буквой, например а.
Для обозначения длины вектора (то есть длины соответствующего отрезка) будем пользоваться символом модуля (например, ).
Произвольный вектор будет иметь координаты, равные разности соответствующих координат его конца и начала:
,
здесь точки A и B имеют координаты соответственно.
Для вычислений мы будем использовать понятие ориентированного угла, то есть угла, учитывающего взаимное расположение векторов.
Ориентированный угол между векторами a и b положительный, если поворот от вектора a к вектору b совершается в положительном направлении (против часовой стрелки) и отрицательный – в другом случае. См рис.1а, рис.1б. Говорят также, что пара векторов a и b положительно (отрицательно) ориентирована.
Рис. 1а | Рис. 1б |
Таким образом, величина ориентированного угла зависит от порядка перечисления векторов и может принимать значения в интервале .
Многие задачи вычислительной геометрии используют понятие векторного (косого или псевдоскалярного) произведений векторов.
Векторным произведением векторов a и b будем называть произведение длин этих векторов на синус угла между ними:
.
Векторное произведение векторов в координатах:
Выражение справа — определитель второго порядка:
В отличии от определения, которое дается в аналитической геометрии, это скаляр.
Знак векторного произведения определяет положение векторов друг относительно друга:
Если величина , то пара векторов a и b положительно ориентирована.
Если величина , то пара векторов a и b отрицательно ориентирована.
Векторное произведение ненулевых векторов равно нулю тогда и только тогда, когда они коллинеарны ( ). Это значит, что они лежат на одной прямой или на параллельных прямых.
Рассмотрим несколько простейших задач, необходимых при решении более сложных.
Уравнение прямой
Определим уравнение прямой по координатам двух точек.
Уравнение прямой, проходящей через две различные точки, заданные своими координатами.
Пусть на прямой заданы две не совпадающие точки: с координатами (x1;y1) и
с координатами (x2; y2). Соответственно вектор с началом в точке
и концом в точке
имеет координаты (x2-x1, y2-y1). Если P(x, y) – произвольная точка на нашей прямой, то координаты вектора
равны (x-x1, y – y1).
С помощью векторного произведения условие коллинеарности векторов и
можно записать так:
, т.е. (x-x1)(y2-y1)-(y-y1)(x2-x1)=0
(y2-y1)x + (x1-x2)y + x1(y1-y2) + y1(x2-x1) = 0
Последнее уравнение перепишем следующим образом:
c = x1(y1-y2) + y1(x2-x1)
Итак, прямую можно задать уравнением вида (1).
Задача 1. Заданы координаты двух точек. Найти её представление в виде ax + by + c = 0.
На этом уроке мы познакомились с некоторыми сведениями из вычислительной геометрии. Решили задачу по нахождению уравнения линии по координатам двух точек.
На следующем уроке составим программу для нахождения точки пересечения двух линий, заданных своими уравнениями.
Источник