Как вывести случайный элемент списка python

Python 3: Генерация случайных чисел (модуль random)¶

«Генерация случайных чисел слишком важна, чтобы оставлять её на волю случая»

Python порождает случайные числа на основе формулы, так что они не на самом деле случайные, а, как говорят, псевдослучайные [1]. Этот способ удобен для большинства приложений (кроме онлайновых казино) [2].

[1] Википедия: Генератор псевдослучайных чисел
[2] Доусон М. Программируем на Python. — СПб.: Питер, 2014. — 416 с.: ил. — 3-е изд

Модуль random позволяет генерировать случайные числа. Прежде чем использовать модуль, необходимо подключить его с помощью инструкции:

random.random¶

random.random() — возвращает псевдослучайное число от 0.0 до 1.0

random.seed¶

random.seed( ) — настраивает генератор случайных чисел на новую последовательность. По умолчанию используется системное время. Если значение параметра будет одиноким, то генерируется одинокое число:

random.uniform¶

random.uniform( , ) — возвращает псевдослучайное вещественное число в диапазоне от до :

random.randint¶

random.randint( , ) — возвращает псевдослучайное целое число в диапазоне от до :

random.choince¶

random.choince( ) — возвращает случайный элемент из любой последовательности (строки, списка, кортежа):

random.randrange¶

random.randrange( , , ) — возвращает случайно выбранное число из последовательности.

random.shuffle¶

random.shuffle( ) — перемешивает последовательность (изменяется сама последовательность). Поэтому функция не работает для неизменяемых объектов.

Вероятностные распределения¶

random.triangular(low, high, mode) — случайное число с плавающей точкой, low ≤ N ≤ high . Mode — распределение.

random.betavariate(alpha, beta) — бета-распределение. alpha>0 , beta>0 . Возвращает от 0 до 1.

random.expovariate(lambd) — экспоненциальное распределение. lambd равен 1/среднее желаемое. Lambd должен быть отличным от нуля. Возвращаемые значения от 0 до плюс бесконечности, если lambd положительно, и от минус бесконечности до 0, если lambd отрицательный.

random.gammavariate(alpha, beta) — гамма-распределение. Условия на параметры alpha>0 и beta>0 .

random.gauss(значение, стандартное отклонение) — распределение Гаусса.

random.lognormvariate(mu, sigma) — логарифм нормального распределения. Если взять натуральный логарифм этого распределения, то вы получите нормальное распределение со средним mu и стандартным отклонением sigma . mu может иметь любое значение, и sigma должна быть больше нуля.

random.normalvariate(mu, sigma) — нормальное распределение. mu — среднее значение, sigma — стандартное отклонение.

random.vonmisesvariate(mu, kappa) — mu — средний угол, выраженный в радианах от 0 до 2π, и kappa — параметр концентрации, который должен быть больше или равен нулю. Если каппа равна нулю, это распределение сводится к случайному углу в диапазоне от 0 до 2π.

random.paretovariate(alpha) — распределение Парето.

random.weibullvariate(alpha, beta) — распределение Вейбулла.

Примеры¶

Генерация произвольного пароля¶

Хороший пароль должен быть произвольным и состоять минимум из 6 символов, в нём должны быть цифры, строчные и прописные буквы. Приготовить такой пароль можно по следующему рецепту:

Этот же скрипт можно записать всего в две строки:

Данная команда является краткой записью цикла for, вместо неё можно было написать так:

Данный цикл повторяется 12 раз и на каждом круге добавляет к строке psw произвольно выбранный элемент из списка.

Источник

Как случайным образом выбрать элементы из списка в Python

В этой статье мы рассмотрим *как случайным образом выбирать элементы из списка в Python* – как единичные случайные элементы, так и множественные элементы – с повторением и без повторения.

Автор: Guest Contributor
Дата записи

Вступление

Выбор случайного элемента или значения из списка является обычной задачей – будь то рандомизированный результат из списка рекомендаций или просто случайное приглашение.

В этой статье мы рассмотрим как случайным образом выбирать элементы из списка в Python . Мы рассмотрим извлечение как единичных случайных элементов, так и извлечение нескольких элементов – с повторением и без повторения.

Выбор Случайного Элемента Из Списка Python

Наиболее интуитивным и естественным подходом к решению этой задачи является генерация случайного числа, которое действует как индекс для доступа к элементу из списка.

Чтобы реализовать этот подход, давайте рассмотрим некоторые методы генерации случайных чисел в Python: random.randint() и random.randrange() . Мы можем дополнительно использовать random.choice() и предоставить итерацию, которая приводит к тому, что случайный элемент из этой итерации возвращается обратно.

Использование random.randint()

random.randint(a, b) возвращает случайное целое число между a и b включительно.

Нам понадобится случайный индекс в диапазоне 0 to len(list)-1 , чтобы получить случайный индекс элемента в списке:

Запуск этого кода несколько раз дает нам:

Использование random.randrange()

random.randrange(a) – это еще один метод, который возвращает случайное число n такое, что 0 :

Запуск этого кода несколько раз приведет к чему-то вроде:

As random.randrange(len(letters)) возвращает случайно сгенерированное число в диапазоне 0 чтобы len(letters) — 1 , мы используем его для случайного доступа к элементу в letters , как и в предыдущем подходе.

Этот подход немного проще предыдущего, просто потому, что мы не указываем начальную точку, которая по умолчанию равна 0 .

Использование random.choice()

Теперь еще лучшим решением, чем последнее, было бы использование random.choice () , поскольку именно эта функция предназначена для решения этой проблемы:

Выполнение этого несколько раз приводит к:

Выбор Нескольких Случайных Элементов Из Списка Python

Использование random.sample()

Первый метод, который мы можем использовать для случайного выбора нескольких элементов, – это random.sample() . Он производит образец, основанный на том, сколько образцов мы хотели бы наблюдать:

Это возвращает список:

Этот метод выбирает элементы без замены, то есть он выбирает без дубликатов и повторений.

Если мы запустим это:

Поскольку он не возвращает дубликаты, он просто вернет весь наш список в рандомизированном порядке:

Использование случайных вариантов.()

Аналогично предыдущей функции, random.choices() возвращает список случайно выбранных элементов из заданной итерации. Однако он не отслеживает выбранные элементы, поэтому вы также можете получить дубликаты элементов:

Это возвращает что-то вроде:

Кроме того, если мы побежим:

Он может вернуть что-то вроде:

random.choices возвращает a k -размерный список элементов, выбранных случайным образом с заменой.

Этот метод также может быть использован для реализации взвешенных случайных выборов, которые вы можете изучить далее в официальной документации Python .

Вывод

В этой статье мы рассмотрели несколько способов извлечения одного или нескольких случайно выбранных элементов из списка в Python.

Мы получили доступ к списку случайных индексов с помощью randint() и randrange() , но также получили случайные элементы с помощью choice() и sample() .

Источник

Случайное число

Как и многие другие языки программирования, Python позволяет работать с генераторами случайных значений. С их помощью можно оперативно создавать последовательности из различных чисел или символов, предугадать которые невозможно. Для этой цели в Python применяется встроенная библиотека с множеством методов для управляемой генерации.

Что такое случайные числа?

Случайные числа представляют собой произвольные данные, которые были получены в результате автоматической генерации компьютерной программой. Подобная информация используется во многих видах программного обеспечения, где необходимо иметь дело с непредсказуемыми величинами. Ярким примером тому являются игровые автоматы либо казино, в которых каждый раз генерируется новая выигрышная комбинация чисел. Также данный подход применяется в криптографических целях для создания надежных паролей.

Стоит заметить, что стандартные средства Python не способны предоставлять в программе истинно случайные значения. Они предоставляют псевдо случайную последовательность. Инициализируется она от какого либо случайного числа. То есть если мы будем инициализировать последовательность одним и тем же числом, то она будет каждый раз выдавать одинаковые данные. Чтобы этого не было, для инициализации берется значение системных часов.

Так что обычно используется метод генерации псевдослучайных величин с иницилизацией от системных часов.

Реализации случайных чисел в Python

Язык программирования Python содержит в себе несколько разных модулей, применяемых для генерации псевдослучайных величин. Все они, как правило, используют в своих целях текущее системное время, которое установлено на компьютере. Это гарантирует получение разных последовательностей значений при каждом новом обращении к генератору. Среди инструментов, которые предназначены для работы с псевдослучайными числами, находится довольно обширная библиотека random, а также функции numpy.random и os.urandom.

Особенности их применения:

  • Стандартный модуль random в Python 3 включает множество методов для генерации как целых, так и вещественных чисел, а также последовательностей с определенными параметрами.
  • Функция numpy.random используется для заполнения массивов случайными величинами.
  • Функция os.urandom предоставляет набор из случайных байтов, что применимо в криптографии.

Наиболее широкое применение получила в Python библиотека random. Поэтому далее мы ее и рассмотрим подробно.

Модуль random

Ниже приведена таблица, где описаны самые главные методы из подключаемого модуля, входящего в состав стандартных библиотек Python. В таблице приведены названия функций, а также доступный перечень параметров с небольшой характеристикой.

Метод Характеристика
random() возвращает число в диапазоне от 0 до 1
seed(a) настаивает генератор на новую последовательность a
randint(a, b) возвращает целое число в диапазоне от a и b
randrange(a, b, c) возвращает целое число в диапазоне от a до b с шагом c
uniform(a, b) возвращает вещественное число в диапазоне от a и b
shuffle(a) перемешивает значения в списке a
choice(a) возвращает случайный элемент из списка a
sample(a, b) возвращает последовательность длиной b из набора a
getstate() возвращает внутреннее состояние генератора
setstate(a) восстанавливает внутреннее состояние генератора a
getrandbits(a) возвращает a случайно сгенерированных бит
triangular(a, b, c) возвращает вещественное число от a до b с распределением c

Здесь хотелось бы описать функцию seed. Она как раз и применяется для задания инициализирующего числа псевдо случайной последовательности. При вызове seed без параметра, берется значение системного таймера. Эта функция вызывается в конструкторе класса Random.

В примерах мы рассмотрим, как применяются основные функции. А так же в конце рассмотрим как используется SystemRandom.

Примеры

Чтобы воспользоваться возможностями генерации случайных чисел в Python 3, следует произвести импорт библиотеки random, вынеся ее в начало исполняемого файла при помощи ключевого слова import.

Вещественные числа

В модуле есть одноименная функция random. В Python она используется чаще, чем другие функции этого модуля. Функция возвращает вещественное число в промежутке от 0 до 1. В следующем примере демонстрируется создание трех разных переменных a, b и c.

Целые числа

Для получения случайных целых чисел в определенном диапазоне используется функция randint, принимающая два аргумента: минимальное и максимальное значение. Программа, показанная ниже отображает генерацию трех разных значений в промежутке от 0 до 9.

Диапазоны целых

Метод randrange позволяет генерировать целочисленные значения, благодаря работе с тремя параметрами: минимальная и максимальная величина, а также длина шага. Вызвав функцию с одним аргументом, начальная граница получит значение 0, а интервал станет равен 1. Для двух аргументов автоматически инициализируется только длина шага. Работа данного метода с трема разными наборами параметров показана в следующем примере.

Диапазоны вещественных

Сгенерировать вещественное число поможет метод под названием uniform. Он принимает всего два аргумента, обозначающих минимальное и максимальное значения. Демонстрация его работы располагается в следующем примере кода, где создаются переменные a, b и c.

Использование в генераторах

Возможности генерации псевдослучайных чисел можно использовать и для создания последовательностей. В следующем фрагменте кода создается набор чисел при помощи генератора списка со случайным наполнением и длиной. Как можно заметить, в данном примере функция randint вызывается дважды: для каждого элемента и размера списка.

Перемешивание

Метод shuffle дает возможность перемешать содержимое уже созданного списка. Таким образом, все его элементы будут находиться в абсолютно случайном порядке. Пример, где отображается работа этой функции со списком a из 10 значений, располагается дальше.

Случайный элемент списка

При помощи функции choice можно извлечь случайный элемент из существующего набора данных. В следующем примере переменная b получает некое целое число из списка a.

Несколько элементов списка

Извлечь из последовательности данных можно не только один элемент, но и целый набор значений. Функция sample позволит получить абсолютно новый список чисел из случайных компонентов уже существующего списка. В качестве первого аргумента необходимо ввести исходную последовательность, а на месте второго указать желаемую длину нового массива.

Генерация букв

Возможности стандартной библиотеки позволяют генерировать не только числа, но и буквы. В следующем примере показывается инициализация трех разных переменных случайными символами латиницы. Для этого необходимо произвести импортирование модуля string, а затем воспользоваться списком letters, который включает все буквы английского алфавита.

Как можно заметить, отображаются буквы в разном регистре. Для того чтобы преобразовать их к общему виду, рекомендуется вызвать стандартные строковые методы upper или lower.

SystemRandom

Как уже говорилось ранее, SystemRandom основана на os.urandom. Она выдает так же псевдослучайные данные, но они зависят дополнительно и от операционной системы. Результаты используются в криптографии. Есть недостаток — то что функции SystemRandom отрабатывают в несколько раз дольше. Рассмотрим пример использования:

Заключение

Таким образом, язык программирования Python содержит массу встроенных методов для генерации и обработки случайных значений. Пользоваться ими можно при помощи разных библиотек, входящих в стандартный набор инструментов платформы. Благодаря данным функциям можно задавать различные условия, а также ограничения для своих генераторов.

Источник

Читайте также:  Чем отмыть смолу с плащевки
Оцените статью