- И вывод расчетной формулы
- Ускорение свободного падения
- Формула для расчета ускорения свободного падения
- Интересные факты
- Ускорение свободного падения у поверхности некоторых небесных тел
- Как вывести формулу ускорения свободного падения
- Ускорение свободного падения
- Сила тяготения
- Ускорение свободного падения
- Ускорение свободного падения на разных планетах
- И кому же верить?
- Формула ускорения свободного падения
- Гравитационное поле и ускорение свободного падения
- Ускорение при свободном падении
- Примеры задач с решением
И вывод расчетной формулы
Для определения ускорения свободного падения существует несколько способов. Наиболее простыми и надежными являются методы определения ускорения свободного падения с помощью математического маятника. Математическим маятником называется тело, размерами которого можно пренебречь (материальная точка), подвешенное на нерастяжимой и невесомой нити (рис. 5.2).
В настоящей работе используется модель математического маятника, представляющая собой металлический шарик, подвешенный на нити, длину которой можно легко изменять, перемещая вдоль линейки другой конец нити, перекинутой через блок.
Если маятник вывести из положения равновесия на небольшой угол ( ), то возвращающая сила, действующая на маятник, будет пропорциональна смещению, поэтому маятник начнет совершать гармонические колебания по закону синуса или косинуса:
где х – смещение тела от положения равновесия в момент времени t;
А – максимальное смещение (амплитуда);
w – круговая или циклическая частота колебаний;
Для получения выражения для расчета ускорения свободного падения с помощью маятника примените к нему второй закон динамики:
(5.2)
Для этого предварительно проделайте следующее.
1. Пользуясь рис. 5.2, выразите силу f, действующую на маятник, когда он проходит произвольное положение, через силу тяжести mg и sin a.
2. Принимая во внимание малость угла a, выразите sin a » a через смещение х и длину маятника l.
3. Учтите, что смещение х и сила f всегда направлены противоположно. В результате должны получить для силы выражение
.
4. Найдите выражение для ускорения маятника по формуле
,
т. е. найдите вторую производную функции смещения тела из формулы (5.1).
5. Подставьте значения f и а в формулу (5.2) и произведите преобразования. В результате должны получить:
. (5.3)
6. Учитывая, что круговая частота w связана с периодом колебаний Т соотношением , из формулы (5.3) выразите g через Т и l. Получите:
. (5.4)
Из формулы (5.4) найдите
.
Пользуясь выражением (5.4), можно определить ускорение свободного падения. Для этого достаточно опытным путем определить l и Т, но измерение l осложняется тем, что приходится определять положение точки подвеса и центра тяжести маятника. Поэтому Бесселем предложен оригинальный метод, который сводится к следующему. При произвольной длине l1 измеряется период колебаний Т1. Затем длина маятника изменяется (изменение длины определяется достаточно просто – линейкой на стене). При длине l2 соответственно определяется период колебаний Т2. В результате имеем два уравнения:
,
.
Возводя эти уравнения в квадрат и произведя вычитание, получим:
.
,
. (5.5)
Данное выражение является расчетной формулой для определения ускорения свободного падения методом Бесселя.
Источник
Ускорение свободного падения
Выберем тело, например, камень. Расположим его не некотором расстоянии от поверхности земли. Расстояние от центра Земли до камня равно \( R = \left( r + h \right) \), как представлено на рисунке 1.
Пусть на камень действует только сила, с которой Земля притягивает его, а других сил нет (нет, например, силы сопротивления воздуха).
Свободное падение – это движение тела под действием только одной силы — силы притяжения.
Из законов Ньютона известно: если на тело действует сила, то тело получает ускорение.
Ускорение свободного падения – это ускорение, с которым движется тело, когда на него действует только сила тяжести.
Формула для расчета ускорения свободного падения
Ускорение свободного падения можно посчитать по формуле:
\( g \left( \frac<\text<м>>
\( M \left( \text <кг>\right) \) (килограммы) — масса планеты, которая притягивает
\( r \left( \text <м>\right) \) (метры) – радиус планеты
\( h \left( \text <м>\right) \) (метры) — расстояние от поверхности планеты до тела
\(G \ = 6<,>67 \cdot 10^ <-11>\left( \text <Н>\cdot \frac<\text<м>^2><\text<кг>^2> \right)\) — гравитационная постоянная
Интересные факты
У разных планет ускорение свободного падения различается.
- чем больше масса планеты (или звезды), тем больше будет ускорение свободного падения рядом с такой планетой (или звездой);
- чем дальше от планеты, тем меньше ускорение свободного падения;
- на полюсах ускорение свободного падения больше, чем на экваторе планеты;
Все тела под действием силы тяжести падают с одинаковым ускорением! Это ускорение не зависит от массы тела.
Из житейского опыта мы знаем: чем больше площадь тела, тем больше времени ему нужно, чтобы упасть с какой-либо высоты. При своем падении тело опирается на воздух, поэтому, к примеру, лист бумаги будет падать дольше, чем шарик из пластилина, или гирька.
В безвоздушном пространстве опираться не на что. Поэтому гирька, лист бумаги, птичье перо и пластилиновый шарик, стартовав с одной и той же высоты одновременно, упадут на поверхность планеты тоже одновременно.
Ускорение свободного падения у поверхности некоторых небесных тел
- у поверхности Земли \( g = 9<,>8 \left( \frac<\text<м>>
> \right) \) - у поверхности Луны \( g = 1<,>68 \left( \frac<\text<м>>
> \right) \) - у поверхности Марса \( g = 3<,>86 \left( \frac<\text<м>>
> \right) \) - у поверхности Солнца \( g = 273<,>1 \left( \frac<\text<м>>
> \right) \) - у поверхности Юпитера \( g = 23<,>95 \left( \frac<\text<м>>
> \right) \)
Как вывести формулу ускорения свободного падения
Рассмотрим камень, находящийся на некотором расстоянии от Земли.
Земля и камень притягиваются, запишем закон притяжения между планетой и камнем
С другой стороны, у камня есть вес, так как на него действует сила тяжести.
Мы можем записать эти уравнения в виде системы.
\[ \begin
Земля и камень притягиваются, благодаря этому на камень действует сила тяжести. На языке математики это запишется так:
А если равны левые части уравнений, то будут равны и правые:
Масса \( m \) камня встречается в обеих частях уравнения. Поделим обе части уравнения на массу камня.
Источник
Ускорение свободного падения
О чем эта статья:
Сила тяготения
В 1682 году Исаак Ньютон открыл закон всемирного тяготения. Он звучит так: все тела притягиваются друг к другу, сила всемирного тяготения прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними.
Формула силы тяготения согласно этому закону выглядит так:
Закон всемирного тяготения
F — сила тяготения [Н]
M — масса первого тела (часто планеты) [кг]
m — масса второго тела [кг]
R — расстояние между телами [м]
G — гравитационная постоянная
G = 6,67 × 10 -11 м 3 ·кг -1 ·с -2
Когда мы встаем на весы, стрелка отклоняется. Это происходит потому, что масса Земли очень большая, и сила тяготения буквально придавливает нас к поверхности. На более легкой Луне человек весит меньше в шесть раз.
Закон всемирного тяготения используют, чтобы вычислить силы взаимодействия между телами любой формы, если размеры тел значительно меньше расстояния между ними.
Если мы возьмем два шара, то для них можно использовать этот закон вне зависимости от расстояния между ними. За расстояние R между телами в этом случае принимается расстояние между центрами шаров.
Приливы и отливы существуют благодаря закону всемирного тяготения. В этом видео я рассказываю, что общего у приливов и прыщей. 🤓
Ускорение свободного падения
Чтобы математически верно и красиво прийти к ускорению свободного падения, нам необходимо сначала ввести понятие силы тяжести.
Сила тяжести — сила, с которой Земля притягивает все тела.
Сила тяжести
F = mg
F — сила тяжести [Н]
m — масса тела [кг]
g — ускорение свободного падения [м/с 2 ]
На планете Земля g = 9,8 м/с 2 , но подробнее об этом чуть позже. 😉
На первый взгляд сила тяжести очень похожа на вес тела. Действительно, в состоянии покоя на поверхности Земли формулы силы тяжести и веса идентичны. Вес тела в состоянии покоя численно равен массе тела, умноженной на ускорение свободного падения, разница состоит лишь в точке приложения силы.
Сила тяжести — это сила, с которой Земля действует на тело, а вес — сила, с которой тело действует на опору. Это значит, что у них будут разные точки приложения: у силы тяжести к центру масс тела, а у веса — к опоре.
Также важно понимать, что сила тяжести зависит исключительно от массы и планеты, на которой тело находится. А вес зависит еще и от ускорения, с которым движется тело или опора.
Например, в лифте вес зависит от того, куда и с каким ускорением двигаются его пассажиры. А силе тяжести все равно, куда и что движется — она не зависит от внешних факторов.
На второй взгляд сила тяжести очень похожа на силу тяготения. В обоих случаях мы имеем дело с притяжением — значит, можем сказать, что это одно и то же. Практически.
Мы можем сказать, что это одно и то же, если речь идет о Земле и каком-то предмете, который к этой планете притягивается. Тогда мы можем даже приравнять эти силы и выразить формулу для ускорения свободного падения:
Приравниваем правые части:
Делим на массу левую и правую части:
Это и будет формула ускорения свободного падения. Ускорение свободного падения для каждой планеты уникально.
Формула ускорения свободного падения
g — ускорение свободного падения [м/с 2 ]
M — масса планеты [кг]
R — расстояние между телами [м]
G — гравитационная постоянная
G = 6,67 × 10 -11 м 3 ·кг -1 ·с -2
Ускорение свободного падения характеризует то, как быстро увеличивается скорость тела при свободном падении.
Свободное падение — это ускоренное движение тела в безвоздушном пространстве, при котором на тело действует только сила тяжести.
Ускорение свободного падения на разных планетах
Выше мы уже вывели формулу ускорения свободного падения. Давайте попробуем рассчитать ускорение свободного падения на планете Земля.
Для этого нам понадобятся следующие величины:
- Гравитационная постоянная
G = 6,67 × 10 -11 м 3 ·кг -1 ·с -2 - Масса Земли
M = 5,97 × 10 24 кг - Радиус Земли
R = 6371 км
Подставим значения в формулу:
Есть один нюанс: в значении ускорения свободного падения для Земли очень много знаков после запятой. В школе обычно дают то же значение, что мы указали выше: g = 9,81 м/с 2 . В экзаменах ОГЭ и ЕГЭ в справочных данных дают g = 10 м/с 2 .
И кому же верить?
Все просто: для кого решается задача, тот и главный. В экзаменах берем g = 10 м/с 2 , в школе при решении задач (если в условии задачи не написано что-то другое) берем g = 9,8 м/с 2 .
Ниже представлена таблица ускорений свободного падения и других характеристик для планет Солнечной системы, карликовых планет и Солнца.
Небесное тело
Ускорение свободного падения, м/с 2
Диаметр, км
Расстояние до Солнца, миллионы км
Масса, кг
Соотношение с массой Земли
Источник
Формула ускорения свободного падения
Гравитационное поле и ускорение свободного падения
Гравитационные взаимодействия тел можно описывать, применяя понятие гравитационного поля. Считают, что передача любых взаимодействий между телами реализуется при помощи полей, которые создают рассматриваемые тела. Одно из тел не оказывает непосредственного действия на другое тело, но оно создает в окружающем его пространстве гравитационное поле, особый вид материи, которая и оказывает воздействие на второе тело. Наглядной картины поля дать нельзя, понятие физического поля относят к основным понятиям, которые невозможно определить, используя другие более простые понятия. Можно только определить свойства поля.
Гравитационное поле может создавать силу. Поле зависит только от тела, которое его создает и не зависит от тела, на которое оно действует. Силовой характеристикой гравитационного поля является его напряжённость, которую обозначают $\overline
Если гравитационное поле создается материальной точкой массы $M$, то оно имеет сферическую симметрию. Это значит, что вектор $\overline
Из формулы (2) следует, что $g$ зависит от расстояния ($r$) от источника поля до точки, в которой поле рассматривается. В таком поле движение происходит по законам Кеплера.
Гравитационные поля удовлетворяют принципу суперпозиции. Напряженность поля, которая создается несколькими телами, равна векторной сумме напряженностей полей, которые порождаются каждым телом отдельно. Принцип суперпозиции выполняется, поскольку гравитационное поле, создаваемое какой-либо массой, не зависит от присутствия других масс. Принцип суперпозиции дает возможность рассчитывать гравитационные поля, которые созданы телами, отличающимися от точечных (размеры которых следует учитывать).
Ускорение при свободном падении
Если тело около поверхности Земли движется только под воздействием силы тяжести ($\overline
где $m$ — масса свободно падающего тела.
В соответствии с законом гравитации величина силы $\overline
где $\gamma $- гравитационная постоянная; $M$ — масса Земли; $R$ — радиус Земли.
Получается, что модуль ускорения свободного падения у поверхности Земли ($h\ll R$) равен:
Направлено ускорение свободного падения к центру Земли.
Правая часть выражения (5) дает величину напряженности гравитационного поля Земли вблизи к ее поверхности.
Получаем, что напряжённость гравитационного поля и ускорение свободного падения в поле гравитации — это одно и то же. Поэтому эти величины были сразу обозначены одной буквой.
Величина ускорения свободного падения на расстоянии $h$ от поверхности Земли вычисляется при помощи формулы:
В задачах о движении тел около поверхности Земли ускорение свободного падения считают постоянной величиной, которую вычисляют с помощью формулы (5), так как в сравнении с радиусом Земли рассматриваемые расстояния много меньше, чем $R$. Обычно, ускорение свободного падения на Земле считают равным $g=9,8\ \frac<м><с^2>$.
Примеры задач с решением
Задание. Каково ускорение свободного падения на Меркурии, если его масса меньше массы Земли в 18,18 раза, отношение радиусов Земли ($R_z$) и радиуса Меркурия ($R_m$) составляет $\frac
Решение. Модуль ускорения свободного падения у поверхности Земли определен формулой:
Величина вектора напряженности гравитационного поля любого тела равна:
\[g\left(r\right)=\gamma \frac
если в формулу (1.2) вместо массы $M$ подставить массу Меркурия, а вместо $r$ его радиус, то мы получим ускорение свободного падения около поверхности Меркурия:
Найдем отношение выражений (1.1) и (1.3):
Считая, что нам известно ускорение свободного падения на Земле ($g=9,8\ \frac<м><с^2>$), выразим ускорение свободного падения на Меркурии:
Вычислим искомое ускорение:
Ответ. $g_m=3,73\frac<м><с^2>$
Задание. Ускорение свободного падения на поверхности Земли считают равным $g_0$. Тело опускают в глубокую шахту под Землю. На какой глубине ($h$) от поверхности ускорение свободного падения данного тела будет составлять $g=$0,3 $g_0.\ $Радиус Земли равен $R.\ $Землю считайте однородным шаром.
Решение. Если тело находится на некоторой глубине, то считаем, что находящиеся выше слои Земли действуют на тело с силами гравитации, которые взаимно компенсируют друг друга. Поэтому тело притягивается только той массой Земли, которая находится ниже рассматриваемого тела.
В качестве основы для решения задачи используем закон всемирного тяготения в виде:
где $m$ — масса тела; $M$ — масса Земли; $r$ — расстояние от центра Земли до рассматриваемого тела, то есть:
где $R$ — радиус Земли. Мы можем использовать закон гравитации в виде (2.1), так как по условию задачи Землю считаем однородным шаром (ее масса распределена сферически симметрично), а тело материальной точкой. С другой стороны на тело действует сила, которая равна:
Приравняем правые части выражений (2.1) и (2.3), учтем (2.2):
где $M’=\frac<4\pi ><3><\rho \left(R-h\ \right)>^3$ — масса слоев Земли ниже рассматриваемого тела; $\rho $ — плотность Земли.
У поверхности Земли мы знаем, что:
Выразим из (2.5) плотность Земли:
Подставим результат (2.6) в формулу (2.4) выразим высоту:
Ответ. $h=R\left(1-\frac
Источник