- Момент инерции стержня однородного и тонкого. Использование теоремы Штейнера. Пример задачи
- Вращение и момент инерции
- Тонкий стержень и оси вращения
- Момент инерции относительно O1
- Инерции момент относительно O2
- Пример задачи
- Вычисление моментов инерции
- Момент инерции для чайников: определение, формулы, примеры решения задач
- Что такое инерция
- Определение момента инерции
- Теорема Штейнера
- Пример решения задачи на нахождение момента инерции
Момент инерции стержня однородного и тонкого. Использование теоремы Штейнера. Пример задачи
В физике для описания инерционных качеств поступательного или линейного движения пользуются понятием массы тела. Если же движение рассматривается вокруг некоторой оси вращения, то используют несколько иную физическую характеристику — момент инерции. В данной статье рассмотрим, что это за величина и как можно рассчитать момент инерции тонкого стержня.
Вращение и момент инерции
Инерции момент проще всего ввести для материальной точки. Когда она, обладая массой M, вращается вокруг оси, описывая окружность радиусом R, то момент инерции для нее определяется по формуле:
Любое реальное тело, какой бы сложной геометрической формой оно не обладало, можно представить как совокупность материальных точек. Это означает, что для всего тела или системы твердых тел величину I можно вычислить, если проинтегрировать по элементарным массам dm выражение выше. Общая формула для определения момента инерции имеет вид:
Через объем и плотность это равенство записывается в таком виде:
Его часто применяют для вычисления значений I конкретных геометрических объектов.
Физический смысл инерции момента I заключается в том, что он определяет, насколько «сложно» данной силе, создающей некоторый крутящий момент, раскрутить или остановить вращающуюся систему. Иными словами, I характеризует инерционные свойства изучаемой системы.
Самым известным примером использования момента инерции является маховик двигателя внутреннего сгорания в автомобилях. Благодаря большому значению величины I, маховик обеспечивает плавность движения автомобиля, сглаживая любые резкие воздействия на коленчатый вал. Пример иного характера, где также важно знать момент инерции, — это закон сохранения момента импульса. Применяется он для поворота вокруг оси искусственных спутников в космическом пространстве Земли.
Тонкий стержень и оси вращения
Далее будет рассмотрен момент инерции стержня относительно осей (разных). Вычисления будут проводиться для тонкого стержня, который обладает однородным распределением массы, то есть его плотность во всех точках является постоянной величиной. Под тонким понимают такой стержень, у которого ширина (толщина) намного меньше, чем его длина L. Для обозначения его массы будем использовать букву M.
Из приведенных выше формул следует, что величина I зависит от относительного положения тела и оси вращения. Для стержня можно выделить три основных оси. Одна из них проходит через длину всего стержня. Поскольку его толщина стремится к нулю, то момент инерции для такого положения тела также будет стремиться к этому значению.
Две другие оси перпендикулярны длине рассматриваемого тела. Одна из них проходит через центр масс, назовем ее O1, вторая — через конец стержня, обозначим ее O2. Относительно них и вычислим величину I.
Момент инерции относительно O1
В первую очередь выпишем общую формулу. Имеем:
Обозначим площадь сечения стержня буквой S. Очевидно, что она стремится к нулю, поскольку стержень тонкий. Но это обозначение удобно ввести для выполнения дальнейших расчетов.
Теперь мысленно разобьем стержень на бесконечное количество мелких кусочков, каждый из которых будет иметь сечение S и толщину dl. Заменяя r на l в формуле выше, получаем:
Остается только подставить правильные пределы интегрирования и записать конечную формулу. Поскольку ось O1 проходит через середину стержня, то пределы интегрирования будут следующими:
Результатом вычисления этого интеграла является следующая формула:
Таким образом, момент инерции тонкого стержня определяется его массой и длиной.
Инерции момент относительно O2
Теперь рассмотрим ситуацию, когда ось вращения будет проходить через любой из концов стержня и будет ему перпендикулярна. Соответствующую формулу можно получить из записанного выше интеграла, если правильно подставить пределы интегрирования. Однако мы пойдем несколько иным путем и определим инерции момент с помощью теоремы Штейнера.
Она говорит о том, что если две оси являются параллельными друг другу и одна из них (ось O) проходит через центр масс тела, то момент инерции относительно второй оси может быть вычислен с помощью такого равенства:
Здесь I0 — момент инерции стержня относительно оси O, h — дистанция между осями.
Эту формулу можно с успехом применить для нашего случая. Поскольку I0 мы рассчитали в предыдущем пункте статьи относительно оси O1, и расстояние между O1 и O2 составляет L/2, то с использованием теоремы Штейнера получаем следующий результат:
Таким образом, для стержня величина I относительно оси O2 в 4 раза больше, чем относительно оси O1. Это означает, что для придания одинакового углового ускорения стержню в случае вращения вокруг оси O2 следует приложить в 4 раза больший крутящий момент, чем в случае оси O1.
Пример задачи
Дан тонкий стержень длиною 0,5 м и массой 5 кг. На расстоянии 2/5 от его конца расположена ось вращения, перпендикулярная стержню. Чему равен момент инерции системы?
Для решения задачи воспользуемся теоремой Штейнера. Расстояние между осями O1 и заданной в задаче равно:
Тогда получаем момент инерции стержня (однородного):
I = I0 + M*h 2 = 5*0,5 2 /12 + 5*0,05 2 = 0,117 кг*м 2 .
В СИ момент инерции стержня измеряется в указанных единицах.
Источник
Вычисление моментов инерции
Момент инерции тела относительно какой-либо оси можно найти вычислением. Если вещество в теле распределено непрерывно, то вычисление момента инерции его сводится к вычислению интеграла
, (4.14)
в котором r – расстояние от элемента массы dm до оси вращения.
Момент инерции тонкого однородного стержня относительно перпендикулярной оси. Пусть ось проходит через конец стержня А (рис. 4.4).
Для момента инерции можно написать IA = kml 2 , где l – длина стержня, k – коэффициент пропорциональности. Центр стержня С является его центром масс. По теореме Штейнера IA = IC + m(l/2) 2 . Величину IC можно представить как сумму моментов инерции двух стержней, СА и СВ, длина каждого из которых равна l/2, масса m/2, а следовательно, момент инерции равен Таким образом, IC = km(l/2) 2 . Подставляя эти выражения в формулу для теоремы Штейнера, получим
,
откуда k = 1/3. В результате находим
(4.15)
(4.16)
Момент инерции бесконечно тонкого круглого кольца (окружности). Момент инерции относительно оси Z (рис. 4.5) равен
где R – радиус кольца. Ввиду симметрии IX = IУ.
Формула (4.17) очевидно, дает также момент инерции полого однородного цилиндра с бесконечно тонкими стенками относительно его геометрической оси.
Момент инерции бесконечно тонкого диска и сплошного цилиндра. Предполагается, что диск и цилиндр однородны, т. е. вещество распределено в них с постоянной плотностью. Пусть ось Z проходит через центр диска С перпендикулярно к его плоскости (рис. 4.6). Рассмотрим бесконечно тонкое кольцо с внутренним радиусом r и наружным радиусом r + dr. Площадь такого кольца dS = 2prdr. Его момент инерции найдется по формуле (4.17), он равен dIz = r 2 dm. Момент инерции всего диска определяется интегралом Ввиду однородности диска dm =
, где S = pR 2 – площадь всего диска. Вводя это выражение под знак интеграла, получим
(4.18)
Формула (4.18) дает также момент инерции однородного сплошного цилиндра относительно его продольной геометрической оси.
Вычисление момента инерции тела относительно оси часто можно упростить, вычислив предварительно момент инерции его относительно точки. Сам по себе момент инерции тела относительно точки не играет никакой роли в динамике. Он является чисто вспомогательным понятием, служащим для упрощения вычислений. Моментом инерции тела относительно точки О называется сумма произведений масс материальных точек, из которых тело состоит, на квадраты их расстояний R до точки О: q = ΣmR 2 . В случае непрерывного распределения масс эта сумма сводится к интегралу q = ∫R 2 dm. Само собой понятно, что момент θ не следует смешивать с моментом инерции I относительно оси. В случае момента I массы dm умножаются на квадраты расстояний до этой оси, а в случае момента θ – до неподвижной точки.
Рассмотрим сначала одну материальную точку с массой m и с координатами x, у, z относительно прямоугольной системы координат (рис. 4.7). Квадраты расстояний ее до координатных осей Х, Y, Z равны соответственно у 2 + z 2 , z 2 + x 2 , x 2 + у 2 , а моменты инерции относительно тех же осей
Но х 2 + у 2 + z 2 = R 2 , где R – расстояние точки m от начала координат О. Поэтому
Это соотношение справедливо не только для одной материальной точки, но и для произвольного тела, так как тело можно рассматривать как совокупность материальных точек. Таким образом, сумма моментов инерции тела относительно трех взаимно перпендикулярных осей, пересекающихся в одной точке О, равна удвоенному моменту инерции того же тела относительно этой точки.
Момент инерции полого шара с бесконечно тонкими стенками.
Сначала найдем момент инерции θ относительно центра шара. Очевидно, он равен θ = mR 2 . Затем применяем формулу (4.19). Полагая в ней ввиду симметрии IX = IY = IZ = I. В результате находим момент инерции полого шара относительно его диаметра
. (4.20)
Источник
Момент инерции для чайников: определение, формулы, примеры решения задач
- 12 января 2021 г.
- 7 минут
- 330 096
Часто мы слышим выражения: «он инертный», «двигаться по инерции», «момент инерции». В переносном значении слово «инерция» может трактоваться как отсутствие инициативы и действий. Нас же интересует прямое значение.
Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.
Что такое инерция
Согласно определению инерция в физике – это способность тел сохранять состояние покоя или движения в отсутствие действия внешних сил.
Если с самим понятием инерции все понятно на интуитивном уровне, то момент инерции – отдельный вопрос. Согласитесь, сложно представить в уме, что это такое. В этой статье Вы научитесь решать базовые задачи на тему «Момент инерции».
Определение момента инерции
Из школьного курса известно, что масса – мера инертности тела. Если мы толкнем две тележки разной массы, то остановить сложнее будет ту, которая тяжелее. То есть чем больше масса, тем большее внешнее воздействие необходимо, чтобы изменить движение тела. Рассмотренное относится к поступательному движению, когда тележка из примера движется по прямой.
По аналогии с массой и поступательным движением момент инерции – это мера инертности тела при вращательном движении вокруг оси.
Момент инерции – скалярная физическая величина, мера инертности тела при вращении вокруг оси. Обозначается буквой J и в системе СИ измеряется в килограммах, умноженных на квадратный метр.
Как посчитать момент инерции? Есть общая формула, по которой в физике вычисляется момент инерции любого тела. Если тело разбить на бесконечно малые кусочки массой dm, то момент инерции будет равен сумме произведений этих элементарных масс на квадрат расстояния до оси вращения.
Это общая формула для момента инерции в физике. Для материальной точки массы m, вращающейся вокруг оси на расстоянии r от нее, данная формула принимает вид:
Теорема Штейнера
От чего зависит момент инерции? От массы, положения оси вращения, формы и размеров тела.
Теорема Гюйгенса-Штейнера – очень важная теорема, которую часто используют при решении задач.
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Теорема Гюйгенса-Штейнера гласит:
Момент инерции тела относительно произвольной оси равняется сумме момента инерции тела относительно оси, проходящей через центр масс параллельно произвольной оси и произведения массы тела на квадрат расстояния между осями.
Для тех, кто не хочет постоянно интегрировать при решении задач на нахождение момента инерции, приведем рисунок с указанием моментов инерции некоторых однородных тел, которые часто встречаются в задачах:
Пример решения задачи на нахождение момента инерции
Рассмотрим два примера. Первая задача – на нахождение момента инерции. Вторая задача – на использование теоремы Гюйгенса-Штейнера.
Задача 1. Найти момент инерции однородного диска массы m и радиуса R. Ось вращения проходит через центр диска.
Разобьем диск на бесконечно тонкие кольца, радиус которых меняется от 0 до R и рассмотрим одно такое кольцо. Пусть его радиус – r, а масса – dm. Тогда момент инерции кольца:
Массу кольца можно представить в виде:
Здесь dz – высота кольца. Подставим массу в формулу для момента инерции и проинтегрируем:
В итоге получилась формула для момента инерции абсолютного тонкого диска или цилиндра.
Задача 2. Пусть опять есть диск массы m и радиуса R. Теперь нужно найти момент инерции диска относительно оси, проходящей через середину одного из его радиусов.
Момент инерции диска относительно оси, проходящей через центр масс, известен из предыдущей задачи. Применим теорему Штейнера и найдем:
Кстати, в нашем блоге Вы можете найти и другие полезные материалы по физике и решению задач.
Надеемся, что Вы найдете в статье что-то полезное для себя. Если в процессе расчета тензора инерции возникают трудности, не забывайте о студенческом сервисе. Наши специалисты проконсультируют по любому вопросу и помогут решить задачу в считанные минуты.
Источник